2024
Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain
Vasylyev D, Zhao P, Schulman B, Waxman S. Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain. The Journal Of General Physiology 2024, 156: e202413596. PMID: 39378238, PMCID: PMC11465073, DOI: 10.1085/jgp.202413596.Peer-Reviewed Original ResearchConceptsDorsal root ganglionGain-of-function Nav1.7 mutationsDorsal root ganglion neuronsSodium channel Nav1.7Inherited erythromelalgiaNav1.7 mutationsNeuropathic painNeuronal hyperexcitabilityOpen-probabilityVoltage-gated sodium channel Nav1.7Hyperexcitability of DRG neuronsModel of neuropathic painSubthreshold membrane potential oscillationsResting membrane potentialMembrane potential oscillationsReduced firing probabilityIncreased rheobaseNav1.8 channelsDRG neuronsHuman genetic modelsNav1.8Root ganglionNav1.7 channelsNav1.7AP generationFunctionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol
Ghovanloo M, Effraim P, Tyagi S, Zhao P, Dib-Hajj S, Waxman S. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Communications Biology 2024, 7: 120. PMID: 38263462, PMCID: PMC10805714, DOI: 10.1038/s42003-024-05781-x.Peer-Reviewed Original ResearchConceptsDorsal root ganglionDorsal root ganglion neuronal excitabilityDorsal root ganglion neuronsNeuronal excitabilityCurrent-clamp analysisSteady-state inactivationVoltage-dependent sodiumSlow inactivated stateAutomated patch clamp platformMultielectrode array recordingsNav currentsNeuropathic painSodium currentRoot ganglionGanglion neuronsSlow inactivationInactivated stateCurrent inhibitorsIon channelsNeuronsInhibitory effectCannabinolArray recordingsEndocannabinoidCannabinoid
2023
Ih current stabilizes excitability in rodent DRG neurons and reverses hyperexcitability in a nociceptive neuron model of inherited neuropathic pain
Vasylyev D, Liu S, Waxman S. Ih current stabilizes excitability in rodent DRG neurons and reverses hyperexcitability in a nociceptive neuron model of inherited neuropathic pain. The Journal Of Physiology 2023, 601: 5341-5366. PMID: 37846879, PMCID: PMC10843455, DOI: 10.1113/jp284999.Peer-Reviewed Original ResearchConceptsFunction Nav1.7 mutationsDorsal root ganglion neuronsSmall DRG neuronsDRG neuronsNav1.7 mutationNeuropathic painGanglion neuronsHuman genetic modelsAction potentialsDRG neuron excitabilityDRG neuron hyperexcitabilityRodent DRG neuronsAP generationCardiac cellsPotential molecular targetsNeuron hyperexcitabilitySevere painPain therapeuticsCNS neuronsExcessive firingNeuron excitabilityCentral neuronsSubthreshold oscillationsHyperexcitabilityNeuronal firingNav1.7 P610T mutation in two siblings with persistent ocular pain after corneal axon transection: impaired slow inactivation and hyperexcitable trigeminal neurons
Ghovanloo M, Effraim P, Yuan J, Schulman B, Jacobs D, Dib-Hajj S, Waxman S. Nav1.7 P610T mutation in two siblings with persistent ocular pain after corneal axon transection: impaired slow inactivation and hyperexcitable trigeminal neurons. Journal Of Neurophysiology 2023, 129: 609-618. PMID: 36722722, PMCID: PMC9988530, DOI: 10.1152/jn.00457.2022.Peer-Reviewed Original ResearchConceptsPersistent ocular painTrigeminal ganglion neuronsOcular painCorneal refractive surgeryGanglion neuronsRefractive surgeryAxonal injurySlow inactivationHuman pain modelTrigeminal afferent nervesTrigeminal ganglion axonsSmall subgroupPain-related disordersEffects of injurySodium channel Nav1.7Channel slow inactivationEye painPostoperative painMost patientsPain modelAfferent nervesPersistent painTrigeminal neuronsNav1.7 mutationAxon transectionHigh-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons
Ghovanloo M, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj S, Waxman S. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. Cell Reports Methods 2023, 3: 100385. PMID: 36814833, PMCID: PMC9939380, DOI: 10.1016/j.crmeth.2022.100385.Peer-Reviewed Original ResearchConceptsDorsal root ganglion neuronsCurrent-clamp recordingsCurrent-clamp analysisVoltage-gated sodium channelsPatch-clamp techniqueExcitable cellsGanglion neuronsElectrophysiological recordingsNeuronal cellsNeuronsGold standard methodologySodium channelsCellular levelRobotic instrumentsCellsDrug screeningSame cellsIntact tissueRecordings
2018
A novel gain-of-function Nav1.7 mutation in a carbamazepine-responsive patient with adult-onset painful peripheral neuropathy
Adi T, Estacion M, Schulman BR, Vernino S, Dib-Hajj S, Waxman S. A novel gain-of-function Nav1.7 mutation in a carbamazepine-responsive patient with adult-onset painful peripheral neuropathy. Molecular Pain 2018, 14: 1744806918815007. PMID: 30392441, PMCID: PMC6856981, DOI: 10.1177/1744806918815007.Peer-Reviewed Original ResearchConceptsPainful peripheral neuropathyDorsal root gangliaPeripheral neuropathyUse-dependent inhibitionDRG neuronsPain disordersM variantFunction Nav1.7 mutationsMulti-electrode array recordingsSympathetic ganglion neuronsCommon pain disordersVoltage-clamp recordingsVoltage-gated sodium channel NaRare MendelianNav1.7 mutationGanglion neuronsSodium channel NaTrigeminal ganglionRoot gangliaNeonatal ratsPatientsNeuropathyMutant channelsFunction variantsNeuronsNav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner
Li Y, Zhu T, Yang H, Dib-Hajj S, Waxman S, Yu Y, Xu TL, Cheng X. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Molecular Pain 2018, 14: 1744806918782229. PMID: 29790812, PMCID: PMC6024516, DOI: 10.1177/1744806918782229.Peer-Reviewed Original ResearchConceptsND7/23 cellsDRG neuron excitabilityModulation of Nav1.7New pain therapeuticsVoltage-gated sodium channel Nav1.7Fyn kinaseWhole-cell recordingsSodium channel Nav1.7Elevated protein expressionCell type-specific modulationHuman embryonic kidney 293 cellsTyrosine kinasePain disordersEmbryonic kidney 293 cellsPain therapeuticsNeuron excitabilityPain perceptionMutant channelsChannel Nav1.7Kidney 293 cellsNav1.7HEK-293 cellsNav1.7 channelsCell type-dependent mannerType-dependent manner
2017
Ode to Glia: A Tribute to Bruce Ransom
Waxman SG, Black JA. Ode to Glia: A Tribute to Bruce Ransom. Neurochemical Research 2017, 42: 2442-2442. PMID: 28921457, DOI: 10.1007/s11064-017-2368-8.Peer-Reviewed Original Research
2012
Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel
Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, Waxman SG. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel. Nature Communications 2012, 3: 1186. PMID: 23149731, PMCID: PMC3530897, DOI: 10.1038/ncomms2184.Peer-Reviewed Original ResearchHodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong
Vandenberg J, Waxman S. Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong. The Journal Of Physiology 2012, 590: 2569-2570. PMID: 22787169, PMCID: PMC3424715, DOI: 10.1113/jphysiol.2012.233411.Peer-Reviewed Original Research
2007
A case of inherited erythromelalgia
Novella SP, Hisama FM, Dib-Hajj SD, Waxman SG. A case of inherited erythromelalgia. Nature Reviews Neurology 2007, 3: 229-234. PMID: 17410110, DOI: 10.1038/ncpneuro0425.Peer-Reviewed Original ResearchConceptsLaboratory blood testingMRI brain scansNeuropathic painSymptomatic managementNeurological examinationRecurrent episodesBlood testingMedical historySkin biopsiesFamily historyDistal extremitiesBrain scansSimilar symptomsGenetic counselingEarly childhoodPainEpisodesErythromelalgiaBiopsyErythemaSymptomsExtremitiesDNA analysisChannel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype
Waxman SG. Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype. Nature Neuroscience 2007, 10: 405-409. PMID: 17387329, DOI: 10.1038/nn1857.Peer-Reviewed Original ResearchConceptsSodium channel functionClinical manifestationsClinical statusNeuronal functionChannel functionPositive clinical manifestationsSodium channelsIon channel mutationsNegative clinical manifestationsNeuronal hyperexcitabilityNeuronal hypoexcitabilityNeuronal activityClinical functionNervous systemSodium channelopathiesChannelopathiesChannel mutationsManifestationsCell backgroundPhysiological propertiesStatusHyperexcitabilityHypoexcitabilitySeizuresParalysis
2006
Fire and phantoms after spinal cord injury: Na+ channels and central pain
Waxman S, Hains B. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends In Neurosciences 2006, 29: 207-215. PMID: 16494954, DOI: 10.1016/j.tins.2006.02.003.Peer-Reviewed Original ResearchConceptsSpinal cord injuryNeuropathic painCord injurySpinal cord dorsal horn neuronsDorsal horn neuronsNervous system injuryCentral painPain pathwaysSystem injuryThalamic neuronsPainAbnormal expressionPhantom phenomenaNeuronsInjuryMolecular targetsMolecular changesRecent findingsHyperexcitabilityNav1.3Molecular basis
2003
The pentapeptide QYNAD does not block voltage-gated sodium channels
Cummins T, Renganathan M, Herzog R, Dib-Hajj S, Waxman S, Stys P, Horn R. The pentapeptide QYNAD does not block voltage-gated sodium channels. Neurology 2003, 60: 1871-1872. PMID: 12796562, DOI: 10.1212/wnl.60.11.1871-a.Peer-Reviewed Original Research
2002
HSV-1 Helper Virus 5dl1.2 Suppresses Sodium Currents in Amplicon-Transduced Neurons
White BH, Cummins TR, Wolf DH, Waxman SG, Russell DS, Kaczmarek LK. HSV-1 Helper Virus 5dl1.2 Suppresses Sodium Currents in Amplicon-Transduced Neurons. Journal Of Neurophysiology 2002, 87: 2149-2157. PMID: 11929932, DOI: 10.1152/jn.00498.2001.Peer-Reviewed Original ResearchConceptsSodium currentAnti-HSV antibodiesAverage spike frequencyWild-type HSV-1Helper virusViral-based strategiesDays of transductionCultured neuronsHSV-1Spike frequencyGene deliveryNeuronsMammalian neuronsAmplicon systemSimilar suppressionHSV-1 genesVirusTherapeutic purposesViral proteinsAmplicon preparationsCellsCoinfectionSuppressionPreparation resultsTiters
2001
Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated
Tyrrell L, Renganathan M, Dib-Hajj S, Waxman S. Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated. Journal Of Neuroscience 2001, 21: 9629-9637. PMID: 11739573, PMCID: PMC6763018, DOI: 10.1523/jneurosci.21-24-09629.2001.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAnimals, NewbornAntibody SpecificityAxotomyCell MembraneCells, CulturedFemaleGanglia, SpinalGlycosylationImmunoblottingMembrane PotentialsN-Acetylneuraminic AcidNAV1.9 Voltage-Gated Sodium ChannelNeuraminidaseNeuronsNeuropeptidesPatch-Clamp TechniquesRatsRats, Sprague-DawleySciatic NerveSodiumSodium ChannelsSubcellular FractionsTetrodotoxinTrigeminal GanglionConceptsImmunoreactive proteinMembrane fractionAdult DRG neuronsTranscription-PCR analysisHigh molecular weight immunoreactive proteinTheoretical molecular weightWhole-cell patch-clamp analysisLong transcriptsGlycosylation statePatch-clamp analysisAdult tissuesLarge proteinsLimited glycosylationEnzymatic deglycosylationExtensive glycosylationState of glycosylationProteinAdult dorsal root gangliaGlycosylationNative neuronsDevelopmental changesInactivationMembrane preparationsDRG neuronsDorsal root ganglia
2000
Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000.
Waxman S, Dib-Hajj S, Cummins T, Black J. Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000. Brain Research 2000, 886: 5-14. PMID: 11119683, DOI: 10.1016/s0006-8993(00)02774-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSodium channel gene expressionSodium channel geneChannel gene expressionChannel genesGene expressionPost-transcriptional levelNormal nervous systemSodium channel expressionSodium channelsChannel expressionMolecular plasticityGenesDynamic expressionCell membraneHypothalamic magnocellular neurosecretory neuronsDifferent repertoiresMultiple sclerosisNervous systemTherapeutic opportunitiesSodium channel subtypesExpressionElectrogenic propertiesRegulationChannel subtypesDysregulationThe neuron as a dynamic electrogenic machine: modulation of sodiumchannel expression as a basis for functional plasticity in neurons
Waxman S. The neuron as a dynamic electrogenic machine: modulation of sodiumchannel expression as a basis for functional plasticity in neurons. Philosophical Transactions Of The Royal Society B Biological Sciences 2000, 355: 199-213. PMID: 10724456, PMCID: PMC1692729, DOI: 10.1098/rstb.2000.0559.Peer-Reviewed Original ResearchConceptsSodium channelsMammalian nervous systemSodium channel geneNervous systemDozen genesDistinct sodium channelsVoltage-gated sodium channelsGenesElectrogenic machineryNormal nervous systemSodium channel expressionFunctional plasticityMembrane of neuronsAction potential activityTranscriptionPathological insultsPhysiological inputsMost neuronsCrucial roleExpressionNeuronsFunctional propertiesElectroresponsive propertiesPotential activityMachineryDevelopment of Glutamatergic Synaptic Activity in Cultured Spinal Neurons
Robert A, Howe J, Waxman S. Development of Glutamatergic Synaptic Activity in Cultured Spinal Neurons. Journal Of Neurophysiology 2000, 83: 659-670. PMID: 10669482, DOI: 10.1152/jn.2000.83.2.659.Peer-Reviewed Original ResearchMeSH Keywords2-Amino-5-phosphonovalerate6-Cyano-7-nitroquinoxaline-2,3-dioneAnimalsCells, CulturedExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsFetusGlutamic AcidMagnesiumMembrane PotentialsNeuronsPatch-Clamp TechniquesQuinoxalinesRatsRats, Sprague-DawleyReceptors, AMPAReceptors, N-Methyl-D-AspartateSpinal CordSynapsesTetrodotoxinConceptsSpontaneous synaptic activityCultured spinal neuronsSynaptic activitySpinal neuronsGlutamatergic synapsesSynaptic currentsGlutamatergic synaptic activityIsoxazolepropionic acid (AMPA) receptorsSpontaneous synaptic currentsOlder neuronsSynaptic NMDARsExogenous glutamateNMDARAcid receptorsSynaptic regionNeuronsReceptor openingSignificant increaseTime courseSynapsesSequence of eventsActivityWeeksCourseReceptorsSodium channels and the molecular pathophysiology of pain
Cummins T, Dib-Hajj S, Black J, Waxman S. Sodium channels and the molecular pathophysiology of pain. Progress In Brain Research 2000, 129: 3-19. PMID: 11098678, DOI: 10.1016/s0079-6123(00)29002-x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDorsal root gangliaTrigeminal neuronsSodium channelsAction potentialsDorsal root ganglion neuronsSpontaneous action potential activityMolecular pathophysiologyPrimary sensory neuronsPeripheral target tissuesAction potential activitySodium channel expressionChain of neuronsPathological burstingNerve injuryNociceptive pathwaysChronic painGanglion neuronsRoot gangliaSensory neuronsChannel expressionSomatosensory systemPainNeuronsTarget tissuesPathophysiology