2015
Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice
Fink KL, Strittmatter SM, Cafferty WB. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice. Journal Of Neuroscience 2015, 35: 15403-15418. PMID: 26586827, PMCID: PMC4649010, DOI: 10.1523/jneurosci.3165-15.2015.Peer-Reviewed Original ResearchMeSH KeywordsAmidinesAnalysis of VarianceAnimalsAxonsBiotinCrystallinsDextransDisease Models, AnimalFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinGPI-Linked ProteinsLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMu-CrystallinsMyelin ProteinsNerve RegenerationNogo Receptor 1Pyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSpinal Cord InjuriesConceptsCorticospinal tractCST axonsTransgenic miceMotor tractsDextran amineFunctional deficitsSpinal cordAxon regenerationSpinal Cord Injury StudySpontaneous axon regenerationSpinal cord traumaNogo receptor 1Permanent functional deficitsPersistent functional deficitsBilateral pyramidotomyDorsal hemisectionMidthoracic cordCord traumaMotor pathwaysAdult CNSCST regenerationInjury studiesLesion siteRegenerating fibersNeural repairPlasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury
Siegel CS, Fink KL, Strittmatter SM, Cafferty WB. Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury. Journal Of Neuroscience 2015, 35: 1443-1457. PMID: 25632122, PMCID: PMC4308593, DOI: 10.1523/jneurosci.3713-14.2015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDesigner DrugsFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinLocomotionMaleMiceMice, Inbred C57BLMice, TransgenicMuscle StrengthMyelin ProteinsNeuronal PlasticityNogo ProteinsPsychomotor DisordersPyramidal TractsRaphe NucleiRecovery of FunctionSpinal Cord InjuriesStereotyped BehaviorTime FactorsConceptsSpinal cord injurySpontaneous functional recoveryFunctional recoverySpontaneous recoveryIncomplete spinal cord injuryCorticospinal tract lesionsWeeks of lesionCorticospinal tract injuryNogo receptor 1Nucleus raphe magnusTract injuryRubrospinal projectionsTract lesionsCord injuryRaphe magnusCircuit rearrangementsAdult CNSCircuit plasticityLocomotor functionAdult micePharmacogenetic toolsRed nucleusRubral projectionReceptor 1Extensive sprouting
2011
Myelin associated inhibitors: A link between injury-induced and experience-dependent plasticity
Akbik F, Cafferty WB, Strittmatter SM. Myelin associated inhibitors: A link between injury-induced and experience-dependent plasticity. Experimental Neurology 2011, 235: 43-52. PMID: 21699896, PMCID: PMC3189418, DOI: 10.1016/j.expneurol.2011.06.006.Peer-Reviewed Original ResearchConceptsExperience-dependent plasticityAnatomical rearrangementsNogo-66 receptor 1Spinal cord injuryNeurologic recoveryFunctional recoveryInciting stimulusCNS injuryCord injuryAxonal regenerationAdult CNSInjury studiesAnimal modelsReceptor 1Common receptorPaired-ImmunoglobulinMyelinInhibitorsInjuryAnatomical growthCNSReceptorsWide spectrumExtracellular matrixGrowth inhibitor
2006
Extracellular regulators of axonal growth in the adult central nervous system
Liu BP, Cafferty WB, Budel SO, Strittmatter SM. Extracellular regulators of axonal growth in the adult central nervous system. Philosophical Transactions Of The Royal Society B Biological Sciences 2006, 361: 1593-1610. PMID: 16939977, PMCID: PMC1664666, DOI: 10.1098/rstb.2006.1891.Peer-Reviewed Original ResearchConceptsAxonal growth inhibitorsAxonal sproutingCNS injuryAdult CNSAxonal growthAdult central nervous systemAdult CNS injuryCentral nervous system functionRecovery of functionRobust axonal growthAstroglial scar formationAdult CNS axonsCentral nervous systemOligodendrocyte myelin glycoproteinNervous system functionNeurological functionPathological damageAxonal stabilityNervous systemScar formationAxonal receptorsNeuronal connectivityCNS axonsEphrin-B3Such interventions
2005
Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury
Li S, Kim JE, Budel S, Hampton TG, Strittmatter SM. Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury. Molecular And Cellular Neuroscience 2005, 29: 26-39. PMID: 15866044, PMCID: PMC3246391, DOI: 10.1016/j.mcn.2004.12.008.Peer-Reviewed Original ResearchConceptsSpinal cord injuryAxonal sproutingSpinal injuryLumbar spinal cordNogo-66 receptorRecovery of locomotionHemisection injuryCord injurySpinal cordAdult CNSMice exhibitTherapeutic meansAxonal growthReceptor functionNgR ligandsInjuryNogo-66Improved locomotionTransgenic inhibitionMiceSproutingAstrocytesCordCNSOMgp
2004
Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury
Kim JE, Liu BP, Park JH, Strittmatter SM. Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury. Neuron 2004, 44: 439-451. PMID: 15504325, DOI: 10.1016/j.neuron.2004.10.015.Peer-Reviewed Original ResearchMeSH Keywords5,7-DihydroxytryptamineAnimalsAxonsBehavior, AnimalBlotting, NorthernBlotting, SouthernBrainCell CountCells, CulturedCloning, MolecularCornified Envelope Proline-Rich ProteinsDesipramineDisease Models, AnimalEvoked Potentials, MotorFemaleGanglia, SpinalGlial Fibrillary Acidic ProteinGlucoseGPI-Linked ProteinsGrowth ConesImmunohistochemistryMiceMice, Inbred C57BLMice, KnockoutMotor ActivityMyelin ProteinsMyelin SheathMyelin-Associated GlycoproteinNerve RegenerationNeuronsNogo ProteinsNogo Receptor 1Phospholipid EthersProteinsPyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSerotoninSerotonin AgentsSpinal CordSpinal Cord InjuriesTime FactorsConceptsAdult CNSNogo-66Spinal cord injuryAdult mammalian CNSNogo-66 receptorDorsal hemisectionDRG neuronsFunctional recoveryRubrospinal fibersCord injuryMyelin inhibitorsComplete transectionCorticospinal fibersMotor functionSpinal cordMotor impairmentAxon regenerationMammalian CNSAxonal growthAxonal outgrowthCNS myelinMiceInhibitory proteinInjuryGrowth cones
2003
Axon Regeneration in Young Adult Mice Lacking Nogo-A/B
Kim J, Li S, GrandPré T, Qiu D, Strittmatter SM. Axon Regeneration in Young Adult Mice Lacking Nogo-A/B. Neuron 2003, 38: 187-199. PMID: 12718854, DOI: 10.1016/s0896-6273(03)00147-8.Peer-Reviewed Original ResearchConceptsCNS axon repairAxon growth inhibitorsSpinal cord injuryAdult mammalian brainAxonal sproutingCorticospinal axonsCord segmentsCord injuryTract tracingAdult CNSLocomotor functionMice LackingAxon repairMammalian brainB expressionMiceYoung adultsInjuryNumerous fibersNormal locomotionAxonsNogoTransectionGrowth inhibitorLittle regenerationThe Nogo-66 receptor: focusing myelin inhibition of axon regeneration
McGee AW, Strittmatter SM. The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends In Neurosciences 2003, 26: 193-198. PMID: 12689770, DOI: 10.1016/s0166-2236(03)00062-6.Peer-Reviewed Original ResearchMeSH KeywordsAcute-Phase ProteinsAnimalsAxonsCells, CulturedGPI-Linked ProteinsHumansIn Vitro TechniquesMiceMyelin ProteinsMyelin SheathMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNerve RegenerationNeural InhibitionNeuronal PlasticityNogo ProteinsNogo Receptor 1RatsReceptor, Nerve Growth FactorReceptors, Cell SurfaceReceptors, Nerve Growth FactorSignal TransductionConceptsNogo-66 receptorMembrane protein NogoSpinal cord injuryFunctional recoveryCord injuryAxonal regrowthSecond messenger pathwaysProtein NogoAdult CNSAxon regenerationMyelin inhibitionAxonal outgrowthAdditional studiesCNS myelinMyelinNeurite elongationPhysiological roleReceptorsMolecular determinantsInhibitorsInhibitionNGRCurrent understanding
2002
Localization of Nogo-A and Nogo-66 Receptor Proteins at Sites of Axon–Myelin and Synaptic Contact
Wang X, Chun SJ, Treloar H, Vartanian T, Greer CA, Strittmatter SM. Localization of Nogo-A and Nogo-66 Receptor Proteins at Sites of Axon–Myelin and Synaptic Contact. Journal Of Neuroscience 2002, 22: 5505-5515. PMID: 12097502, PMCID: PMC6758202, DOI: 10.1523/jneurosci.22-13-05505.2002.Peer-Reviewed Original ResearchConceptsAdult CNSLimited axonal regenerationSpinal cord injuryNogo-66 receptorInteraction of NogoAxonal plasticityCord injurySynaptic contactsAxonal regenerationNgR proteinMyelinated fibersPostnatal neuronsLocalization of NogoMyelinated axonsAxonal growthOligodendrocyte surfacePhysiologic roleAxonsNogoProtein expressionNeuronsReceptorsInhibitory proteinInjuryCNS
1995
Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43
Strittmatter S, Fankhauser C, Huang P, Mashimo H, Fishman M. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 1995, 80: 445-452. PMID: 7859286, DOI: 10.1016/0092-8674(95)90495-6.Peer-Reviewed Original Research