2024
SenNet recommendations for detecting senescent cells in different tissues
Suryadevara V, Hudgins A, Rajesh A, Pappalardo A, Karpova A, Dey A, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver C, Aguayo-Mazzucato C, Baker D, Bernlohr D, Jurk D, Mangarova D, Quardokus E, Enninga E, Schmidt E, Chen F, Duncan F, Cambuli F, Kaur G, Kuchel G, Lee G, Daldrup-Link H, Martini H, Phatnani H, Al-Naggar I, Rahman I, Nie J, Passos J, Silverstein J, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer L, Ding L, Wang L, Adams L, Ruiyang L, Doolittle M, Teneche M, Schafer M, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez P, Vasilikos P, Adams P, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery R, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic V, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nature Reviews Molecular Cell Biology 2024, 25: 1001-1023. PMID: 38831121, PMCID: PMC11578798, DOI: 10.1038/s41580-024-00738-8.Peer-Reviewed Original ResearchSenescent cellsDetect senescent cellsIrreversible cell cycle arrestCellular senescenceCell cycle arrestSenescence markersBiomarker Working GroupCycle arrestCellular senescence markersBiological processesCell biologyPostmitotic cellsSenescent phenotypeCirculating markersTissue culture studiesSenescence signatureSenescenceCellsMorphological featuresDetrimental roleTissueMarkersSeasonal investigation
2020
Smooth Muscle Cell Reprogramming in Aortic Aneurysms
Chen PY, Qin L, Li G, Malagon-Lopez J, Wang Z, Bergaya S, Gujja S, Caulk AW, Murtada SI, Zhang X, Zhuang ZW, Rao DA, Wang G, Tobiasova Z, Jiang B, Montgomery RR, Sun L, Sun H, Fisher EA, Gulcher JR, Fernandez-Hernando C, Humphrey JD, Tellides G, Chittenden TW, Simons M. Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell 2020, 26: 542-557.e11. PMID: 32243809, PMCID: PMC7182079, DOI: 10.1016/j.stem.2020.02.013.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsAortic aneurysmAneurysm developmentMedial smooth muscle cellsAortic aneurysm developmentContractile smooth muscle cellsGrowth factor βHypercholesterolemic dietSmooth muscleAortic wallMesenchymal stem cellsMuscle cellsAneurysmsMarked increaseFactor βExuberant growthStem cellsHuman diseasesCell massCellsAtherosclerosisHypercholesterolemiaInflammationAortaApoE
2019
Multi‐site reproducibility of a human immunophenotyping assay in whole blood and peripheral blood mononuclear cells preparations using CyTOF technology coupled with Maxpar Pathsetter, an automated data analysis system
Bagwell CB, Hunsberger B, Hill B, Herbert D, Bray C, Selvanantham T, Li S, Villasboas JC, Pavelko K, Strausbauch M, Rahman A, Kelly G, Asgharzadeh S, Gomez‐Cabrero A, Behbehani G, Chang H, Lyberger J, Montgomery R, Zhao Y, Inokuma M, Goldberger O, Stelzer G. Multi‐site reproducibility of a human immunophenotyping assay in whole blood and peripheral blood mononuclear cells preparations using CyTOF technology coupled with Maxpar Pathsetter, an automated data analysis system. Cytometry Part B Clinical Cytometry 2019, 98: 146-160. PMID: 31758746, PMCID: PMC7543682, DOI: 10.1002/cyto.b.21858.Peer-Reviewed Original ResearchConceptsPeripheral blood mononuclear cellsWhole bloodPeripheral blood mononuclear cell preparationsDeep immune phenotypingBlood mononuclear cellsImmune cell populationsMononuclear cell preparationsCell populationsTranslational clinical researchWhole blood preparationsImmune phenotypingMononuclear cellsPBMC samplesClinical trialsImmune cellsClinical researchCyTOF technologyBlood preparationsInter-site reproducibilityBloodCell preparationsSingle donorMulti-site reproducibilityCellsProfiling assaysDevelopment of a 2-dimensional atlas of the human kidney with imaging mass cytometry
Singh N, Avigan ZM, Kliegel JA, Shuch BM, Montgomery RR, Moeckel GW, Cantley LG. Development of a 2-dimensional atlas of the human kidney with imaging mass cytometry. JCI Insight 2019, 4: e129477. PMID: 31217358, PMCID: PMC6629112, DOI: 10.1172/jci.insight.129477.Peer-Reviewed Original ResearchConceptsCell typesIndividual cell typesCritical baseline dataRenal cell typesMass cytometryQuantitative atlasNormal human samplesHuman kidneyRelative abundanceDevelopment of therapiesHuman kidney diseaseKidney diseaseMetal-conjugated antibodiesQuantitative interrogationScarce samplesMachine-learning pipelineDiscovery purposesFuture quantitative analysisNovel abnormalityNormal human kidneySingle tissue sectionHuman samplesRenal biopsyImmune cellsCells
2015
Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility
Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, Kinuthia J, Montgomery RR, John-Stewart G, Holmes S, Blish CA. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Science Translational Medicine 2015, 7: 297ra115. PMID: 26203083, PMCID: PMC4547537, DOI: 10.1126/scitranslmed.aac5722.Peer-Reviewed Original ResearchConceptsAntiviral responseInnate natural killer (NK) cellsNK cell repertoire diversityHIV-1 acquisitionNatural killer cellsOutcome of infectionNK cellsWest Nile virusAntitumor responseKiller cellsCytokine productionInhibitory receptorsImmune historyImmune experienceHIV-1Repertoire diversityViral susceptibilityNile virusAfrican womenExposure riskFunctional consequencesTerminal differentiationRiskSingle-cell levelCells
2009
Human innate immunosenescence: causes and consequences for immunity in old age
Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC. Human innate immunosenescence: causes and consequences for immunity in old age. Trends In Immunology 2009, 30: 325-333. PMID: 19541535, PMCID: PMC4067971, DOI: 10.1016/j.it.2009.05.004.Peer-Reviewed Original ResearchConceptsInnate immune system initiatesNatural killer T cellsOlder ageAntiviral cytokine productionKiller T cellsInnate immune responseInnate immune systemDendritic cellsNatural killerCytokine productionHuman immunosenescenceT cellsImmune responseAdaptive immunityImmune systemInnate immunityImmunityAgeCellsDiverse cellsImmunosenescenceVaccinationNeutrophilsMonocytesInfection
2008
RNA interference screen for human genes associated with West Nile virus infection
Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E. RNA interference screen for human genes associated with West Nile virus infection. Nature 2008, 455: 242-245. PMID: 18690214, PMCID: PMC3136529, DOI: 10.1038/nature07207.Peer-Reviewed Original ResearchMeSH KeywordsComputational BiologyDengue VirusEndoplasmic ReticulumGene Expression ProfilingGenome, HumanHeLa CellsHIVHumansImmunityMonocarboxylic Acid TransportersMuscle ProteinsProtein BindingRNA InterferenceUbiquitinationUbiquitin-Protein LigasesVesiculovirusVirus ReplicationWest Nile FeverWest Nile virus
2002
Human phagocytic cells in the early innate immune response to Borrelia burgdorferi
Montgomery RR, Lusitani D, de Boisfleury Chevance A, Malawista SE. Human phagocytic cells in the early innate immune response to Borrelia burgdorferi. The Journal Of Infectious Diseases 2002, 185: 1773-1779. PMID: 12085324, DOI: 10.1086/340826.Peer-Reviewed Original ResearchConceptsPolymorphonuclear leukocytesImmune responseEarly innate immune responseKilling of spirochetesSpecific antibodiesBorrelia burgdorferiSecondary immune responseInnate immune responseInnate immune systemHuman phagocytic cellsSpirochete clearanceMononuclear cellsImmune systemLyme diseasePhagocytic cellsNatural infectionMature macrophagesSpirochetesIntracellular colocalizationAntibodiesBurgdorferiFirst cellsLimited uptakeCellsMonocytes
1993
The fate of Borrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery.
Montgomery RR, Nathanson MH, Malawista SE. The fate of Borrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery. The Journal Of Immunology 1993, 150: 909-15. PMID: 8423346, DOI: 10.4049/jimmunol.150.3.909.Peer-Reviewed Original ResearchConceptsUptake of spirochetesConfocal fluorescence microscopyLikely candidate siteEndocytic pathwayB. burgdorferiBorrelia burgdorferiFluorescence microscopyIntracellular persistenceLyme diseaseInfected cellsPersistence of spirochetesMouse macrophagesIntracellular organismsPositive compartmentsPossible pathogenetic mechanismsExtracellular organismsOrganismsAcridine orangeCellsMultiple time pointsPathogenetic mechanismsSpirochetesInfectious agentsCompartmentsLyme spirochete