2024
Performance of contemporary cardiovascular risk stratification scores in Brazil: an evaluation in the ELSA-Brasil study
Camargos A, Barreto S, Brant L, Ribeiro A, Dhingra L, Aminorroaya A, Bittencourt M, Figueiredo R, Khera R. Performance of contemporary cardiovascular risk stratification scores in Brazil: an evaluation in the ELSA-Brasil study. Open Heart 2024, 11: e002762. PMID: 38862252, PMCID: PMC11168182, DOI: 10.1136/openhrt-2024-002762.Peer-Reviewed Original ResearchConceptsPooled Cohort EquationsELSA-BrasilRisk scoreCardiovascular diseaseCVD eventsCommunity-based cohort studyArea under the receiver operating characteristic curveCVD risk scoreELSA-Brasil studyIncident CVD eventsMiddle-income countriesAdjudicated CVD eventsCardiovascular disease riskCVD scoreCohort EquationsNational guidelinesRisk stratification scoresWhite womenAge/sex groupsCohort studyProspective cohortLMICsSex/race groupsHigher incomeRisk discrimination
2022
Performance of current risk stratification models for predicting mortality in patients with heart failure: a systematic review and meta-analysis
Siddiqi TJ, Ahmed A, Greene SJ, Shahid I, Usman MS, Oshunbade A, Alkhouli M, Hall ME, Murad MH, Khera R, Jain V, Van Spall HGC, Khan MS. Performance of current risk stratification models for predicting mortality in patients with heart failure: a systematic review and meta-analysis. European Journal Of Preventive Cardiology 2022, 29: 2027-2048. PMID: 35919956, DOI: 10.1093/eurjpc/zwac148.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsChronic heart failureLong-term mortalityMid-term mortalityAcute HFHeart failureRisk scoreGeneric inverse variance random effects modelInverse variance random-effects modelCurrent risk stratification modelsExcellent discriminationAcute heart failureRisk stratification modelShort-term mortalityLack of headRandom-effects modelGood discriminationAHF mortalityCause mortalityC-statisticNineteen studiesPatientsMortality predictionSystematic reviewHead comparisonMortality
2021
Scope and Social Determinants of Food Insecurity Among Adults With Atherosclerotic Cardiovascular Disease in the United States
Mahajan S, Grandhi GR, Valero‐Elizondo J, Mszar R, Khera R, Acquah I, Yahya T, Virani SS, Blankstein R, Blaha MJ, Cainzos‐Achirica M, Nasir K. Scope and Social Determinants of Food Insecurity Among Adults With Atherosclerotic Cardiovascular Disease in the United States. Journal Of The American Heart Association 2021, 10: e020028. PMID: 34387089, PMCID: PMC8475063, DOI: 10.1161/jaha.120.020028.Peer-Reviewed Original ResearchConceptsHigh-risk characteristicsUS adultsNational Health Interview Survey dataHealth Interview Survey dataAtherosclerotic cardiovascular diseaseCoronary heart diseaseSelf-reported diagnosisNon-Hispanic blacksInterview Survey dataFood Security Survey ModuleCardiovascular disease resultsLow family incomeAdult Food Security Survey ModuleFood insecurityHeart diseaseASCVDCardiovascular diseasePocket healthcare expenditureHigher oddsSociodemographic determinantsDisease resultsStudy participantsSocial determinantsHealthcare expendituresSociodemographic subgroupsAssociation of COVID-19 Hospitalization Volume and Case Growth at US Hospitals with Patient Outcomes
Khera R, Liu Y, de Lemos JA, Das SR, Pandey A, Omar W, Kumbhani DJ, Girotra S, Yeh RW, Rutan C, Walchok J, Lin Z, Bradley SM, Velazquez EJ, Churchwell KB, Nallamothu BK, Krumholz HM, Curtis JP. Association of COVID-19 Hospitalization Volume and Case Growth at US Hospitals with Patient Outcomes. The American Journal Of Medicine 2021, 134: 1380-1388.e3. PMID: 34343515, PMCID: PMC8325555, DOI: 10.1016/j.amjmed.2021.06.034.Peer-Reviewed Original ResearchConceptsCOVID-19 hospitalizationHospitalization volumeAmerican Heart Association COVID-19 Cardiovascular Disease RegistryCase volumeUS hospitalsCoronavirus disease 2019 (COVID-19) hospitalizationIntensive care unit therapyHospital case fatality ratePoor COVID-19 outcomesCardiovascular Disease RegistryHospital case volumeCase fatality rateCOVID-19 outcomesHospital bed capacityLowest quartilePatient outcomesHospital careHigher oddsTriage strategiesFuture health challengesDisease RegistryMedical treatmentEarly identificationHospitalSignificant associationAssociation of Kidney Disease With Outcomes in COVID‐19: Results From the American Heart Association COVID‐19 Cardiovascular Disease Registry
Rao A, Ranka S, Ayers C, Hendren N, Rosenblatt A, Alger HM, Rutan C, Omar W, Khera R, Gupta K, Mody P, DeFilippi C, Das SR, Hedayati SS, de Lemos JA. Association of Kidney Disease With Outcomes in COVID‐19: Results From the American Heart Association COVID‐19 Cardiovascular Disease Registry. Journal Of The American Heart Association 2021, 10: e020910. PMID: 34107743, PMCID: PMC8477855, DOI: 10.1161/jaha.121.020910.Peer-Reviewed Original ResearchConceptsAcute kidney injuryMajor adverse cardiac eventsAdverse cardiac eventsChronic kidney diseaseCardiac eventsKidney diseaseCause mortalityAmerican Heart Association COVID-19 Cardiovascular Disease RegistryCOVID-19Major adverse cardiovascular eventsEnd-stage kidney diseaseCardiovascular Disease RegistryLarge multicenter registryNonfatal heart failureSerial laboratory dataAdverse cardiovascular eventsNonfatal myocardial infarctionKey secondary outcomesCardiovascular disease outcomesPrimary exposure variableNonfatal strokeCardiogenic shockCardiovascular deathCardiovascular eventsCardiovascular outcomesUse of Machine Learning Models to Predict Death After Acute Myocardial Infarction
Khera R, Haimovich J, Hurley NC, McNamara R, Spertus JA, Desai N, Rumsfeld JS, Masoudi FA, Huang C, Normand SL, Mortazavi BJ, Krumholz HM. Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction. JAMA Cardiology 2021, 6: 633-641. PMID: 33688915, PMCID: PMC7948114, DOI: 10.1001/jamacardio.2021.0122.Peer-Reviewed Original ResearchMeSH KeywordsAgedCohort StudiesFemaleHospital MortalityHumansMachine LearningMaleMyocardial InfarctionRegistriesRisk AssessmentUnited StatesConceptsMachine learning modelsMeta-classifier modelLearning modelNeural networkGradient descent boostingAcute myocardial infarctionContemporary machineGradient descentXGBoost modelXGBoostHospital mortalityCohort studyLogistic regressionMyocardial infarctionNetworkChest Pain-MI RegistryPrecise classificationIndependent validation dataInitial laboratory valuesNovel methodLarge national registryHigh-risk individualsData analysisValidation dataResolution of riskContemporary National Patterns of Eligibility and Utilization of Novel Cardioprotective Anti‐hyperglycemic agents in Type 2 Diabetes
Nargesi AA, Jeyashanmugaraja GP, Desai N, Lipska K, Krumholz H, Khera R. Contemporary National Patterns of Eligibility and Utilization of Novel Cardioprotective Anti‐hyperglycemic agents in Type 2 Diabetes. Journal Of The American Heart Association 2021, 10: e021084. PMID: 33998258, PMCID: PMC8403287, DOI: 10.1161/jaha.121.021084.Peer-Reviewed Original ResearchMeSH KeywordsAgedBiomarkersBlood GlucoseCardiovascular DiseasesDiabetes Mellitus, Type 2Drug UtilizationEligibility DeterminationFemaleGlucagon-Like Peptide-1 ReceptorGuideline AdherenceHeart Disease Risk FactorsHumansIncretinsMaleMiddle AgedNutrition SurveysPractice Guidelines as TopicPractice Patterns, Physicians'Risk AssessmentSodium-Glucose Transporter 2 InhibitorsTime FactorsTreatment OutcomeUnited StatesConceptsSGLT-2 inhibitorsType 2 diabetes mellitusAtherosclerotic cardiovascular diseaseChronic kidney diseaseLarge clinical trialsGLP-1RAsDiabetes mellitusCardiovascular diseaseHeart failureKidney diseaseClinical trialsHigh-risk atherosclerotic cardiovascular diseaseGLP-1RA useAmerican Diabetes AssociationNutrition Examination SurveyAnti-hyperglycemic agentsPublic health benefitsComplex survey designCardiovascular riskGuideline recommendationsDiabetes AssociationExamination SurveyProtective therapyNational HealthAmerican College
2020
Revascularization Practices and Outcomes in Patients With Multivessel Coronary Artery Disease Who Presented With Acute Myocardial Infarction and Cardiogenic Shock in the US, 2009-2018
Khera R, Secemsky EA, Wang Y, Desai NR, Krumholz HM, Maddox TM, Shunk KA, Virani SS, Bhatt DL, Curtis J, Yeh RW. Revascularization Practices and Outcomes in Patients With Multivessel Coronary Artery Disease Who Presented With Acute Myocardial Infarction and Cardiogenic Shock in the US, 2009-2018. JAMA Internal Medicine 2020, 180: 1317-1327. PMID: 32833024, PMCID: PMC9377424, DOI: 10.1001/jamainternmed.2020.3276.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedCohort StudiesCoronary VesselsFemaleFollow-Up StudiesHospital MortalityHumansMaleMiddle AgedMyocardial InfarctionPatient DischargePercutaneous Coronary InterventionRisk AssessmentRisk FactorsShock, CardiogenicST Elevation Myocardial InfarctionTime FactorsTreatment OutcomeUnited StatesConceptsST-segment elevation myocardial infarctionMultivessel percutaneous coronary interventionMultivessel coronary artery diseasePercutaneous coronary interventionAcute myocardial infarctionCoronary artery diseaseCulprit vessel percutaneous coronary interventionCardiogenic shockHospital mortalityArtery diseaseMyocardial infarctionCohort studyPrimary outcomeHospital variationPCI strategyMedicare beneficiariesUnderwent multivessel PCISignificant hospital variationElevation myocardial infarctionSubset of patientsHigh-risk populationRecent evidenceHospital complicationsPCI useRevascularization practicePerformance of the Pooled Cohort Equations to Estimate Atherosclerotic Cardiovascular Disease Risk by Body Mass Index
Khera R, Pandey A, Ayers CR, Carnethon MR, Greenland P, Ndumele CE, Nambi V, Seliger SL, Chaves PHM, Safford MM, Cushman M, Xanthakis V, Ramachandran V, Mentz RJ, Correa A, Lloyd-Jones DM, Berry JD, de Lemos JA, Neeland IJ. Performance of the Pooled Cohort Equations to Estimate Atherosclerotic Cardiovascular Disease Risk by Body Mass Index. JAMA Network Open 2020, 3: e2023242. PMID: 33119108, PMCID: PMC7596579, DOI: 10.1001/jamanetworkopen.2020.23242.Peer-Reviewed Original ResearchConceptsHigh-sensitivity C-reactive proteinPooled Cohort EquationsASCVD riskAtherosclerotic cardiovascular diseaseBody mass indexBMI categoriesCohort EquationsObesity categoriesCohort studySevere obesityWaist circumferenceBMI groupsMass indexUnderweight categoryAtherosclerotic cardiovascular disease riskMean baseline BMIRisk of ASCVDUsual clinical measuresCardiovascular disease riskC-reactive proteinPooled individual-level dataSevere obesity groupLongitudinal cohort studyNormal weight categoryAdults ages 40The Upcoming Epidemic of Heart Failure in South Asia
Martinez-Amezcua P, Haque W, Khera R, Kanaya AM, Sattar N, Lam CSP, Harikrishnan S, Shah SJ, Kandula NR, Jose PO, Narayan KMV, Agyemang C, Misra A, Jenum AK, Bilal U, Nasir K, Cainzos-Achirica M. The Upcoming Epidemic of Heart Failure in South Asia. Circulation Heart Failure 2020, 13: e007218. PMID: 32962410, DOI: 10.1161/circheartfailure.120.007218.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsType 2 diabetes mellitusHeart failureCoronary heart diseaseHeart diseaseHF epidemicDiabetes mellitusEarly type 2 diabetes mellitusLifestyle-related risk factorsPrognosis of HFPremature coronary heart diseasePremature heart failurePrevalent heart failureRheumatic heart diseaseSouth AsiansAbdominal obesityGeneral obesitySouth Asian populationRisk factorsDramatic healthGlobal burdenRecent studiesUrgent interventionUnderrecognized threatTobacco productsUpcoming epidemicBurden and Consequences of Financial Hardship From Medical Bills Among Nonelderly Adults With Diabetes Mellitus in the United States
Caraballo C, Valero-Elizondo J, Khera R, Mahajan S, Grandhi GR, Virani SS, Mszar R, Krumholz HM, Nasir K. Burden and Consequences of Financial Hardship From Medical Bills Among Nonelderly Adults With Diabetes Mellitus in the United States. Circulation Cardiovascular Quality And Outcomes 2020, 13: e006139. PMID: 32069093, DOI: 10.1161/circoutcomes.119.006139.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAge FactorsBlack or African AmericanComorbidityCost of IllnessCross-Sectional StudiesDiabetes MellitusFemaleFinancing, PersonalFood SupplyHealth Care CostsHealth Care SurveysHealth ExpendituresHealth Services AccessibilityHumansIncomeMaleMedically UninsuredMiddle AgedPatient ComplianceRisk AssessmentRisk FactorsUnited StatesYoung AdultConceptsDiabetes mellitusMedical billsHigher oddsMedical careNational Health Interview Survey dataHealth Interview Survey dataCost-related medication nonadherenceHigher comorbidity burdenCost-related nonadherenceSelf-reported diagnosisNon-Hispanic blacksInterview Survey dataFinancial hardshipMedication nonadherenceMean ageNonmedical needsHigh prevalenceMellitusMultivariate analysisPocket expenditureFood insecurityNonadherenceHigh financial distressPatientsAdults
2019
Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction
Angraal S, Mortazavi BJ, Gupta A, Khera R, Ahmad T, Desai NR, Jacoby DL, Masoudi FA, Spertus JA, Krumholz HM. Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction. JACC Heart Failure 2019, 8: 12-21. PMID: 31606361, DOI: 10.1016/j.jchf.2019.06.013.Peer-Reviewed Original ResearchConceptsHF hospitalizationRisk of mortalityEjection fractionBlood urea nitrogen levelsLogistic regressionPrevious HF hospitalizationHeart failure hospitalizationReduced ejection fractionReceiver-operating characteristic curveRisk of deathBody mass indexBlood urea nitrogenUrea nitrogen levelsHealth status dataMean c-statisticKCCQ scoresTOPCAT trialFailure hospitalizationHeart failureHemoglobin levelsMass indexC-statisticHospitalizationUrea nitrogenMortality
2018
Usefulness of a Simple Algorithm to Identify Hypertensive Patients Who Benefit from Intensive Blood Pressure Lowering
Wang S, Khera R, Das SR, Vigen R, Wang T, Luo X, Lu R, Zhan X, Xiao G, Vongpatanasin W, Xie Y. Usefulness of a Simple Algorithm to Identify Hypertensive Patients Who Benefit from Intensive Blood Pressure Lowering. The American Journal Of Cardiology 2018, 122: 248-254. PMID: 29880288, DOI: 10.1016/j.amjcard.2018.03.361.Peer-Reviewed Original ResearchConceptsSystolic Blood Pressure Intervention TrialIntensive BP loweringUrinary albumin-creatinine ratioFavorable risk-benefit profileAlbumin-creatinine ratioBP loweringRisk-benefit profileHypertensive patientsBlood pressureMajor adverse cardiovascular event ratesAdverse cardiovascular event ratesIntensive blood pressure loweringMajor adverse cardiovascular eventsRemaining low-risk patientsSimple risk prediction modelIntensive blood pressureStandard BP loweringAdverse cardiovascular eventsBlood pressure loweringSerious adverse eventsCardiovascular event ratesLarge randomized trialsLow-risk patientsSubset of patientsCardiovascular disease riskEffects of Weight-Loss Medications on Cardiometabolic Risk Profiles: A Systematic Review and Network Meta-analysis
Khera R, Pandey A, Chandar AK, Murad MH, Prokop LJ, Neeland IJ, Berry JD, Camilleri M, Singh S. Effects of Weight-Loss Medications on Cardiometabolic Risk Profiles: A Systematic Review and Network Meta-analysis. Gastroenterology 2018, 154: 1309-1319.e7. PMID: 29305933, PMCID: PMC5880739, DOI: 10.1053/j.gastro.2017.12.024.Peer-Reviewed Original ResearchConceptsWeight loss medicationsCardiometabolic risk profileHigh-density lipoprotein cholesterolWaist circumferenceDrug AdministrationSystematic reviewRisk profileLipoprotein cholesterolHemoglobin A1cObese adultsCholesterol profileSystolic/diastolic BPCardiometabolic risk factorsNetwork Meta-AnalysisRandomized clinical trialsQuality of evidenceLow-density lipoproteinModest decreaseOutcomes of interestEffect of foodLong-term useMinimal effectLiraglutide useOrlistat useBlood pressure
2017
Persistent socioeconomic disparities in cardiovascular risk factors and health in the United States: Medical Expenditure Panel Survey 2002–2013
Valero-Elizondo J, Hong JC, Spatz ES, Salami JA, Desai NR, Rana JS, Khera R, Virani SS, Blankstein R, Blaha MJ, Nasir K. Persistent socioeconomic disparities in cardiovascular risk factors and health in the United States: Medical Expenditure Panel Survey 2002–2013. Atherosclerosis 2017, 269: 301-305. PMID: 29254694, DOI: 10.1016/j.atherosclerosis.2017.12.014.Peer-Reviewed Original ResearchConceptsCardiovascular diseaseSocioeconomic statusWorse cardiovascular risk factor profileCardiovascular risk factor profileHighest prevalence increasePrevalence of CRFCardiovascular risk factorsRisk factor profileHealthy lifestyle behaviorsMedical Expenditure Panel Survey 2002Medical Expenditure Panel SurveyHealth disparity gapRelative percent increasePhysical inactivityLifestyle behaviorsRisk factorsPrevalence increasesHigh burdenHigh prevalenceLow-income groupsProportion of individualsUS adultsFactor profileDisparity gapSocioeconomic disparities