Homogeneous organic reductant based on 4,4′- t Bu2-2,2′-bipyridine for cross-electrophile coupling
Charboneau D, Huang H, Barth E, Deziel A, Germe C, Hazari N, Jia X, Kim S, Nahiyan S, Birriel–Rodriguez L, Uehling M. Homogeneous organic reductant based on 4,4′- t Bu2-2,2′-bipyridine for cross-electrophile coupling. Tetrahedron Letters 2024, 145: 155159. PMID: 39036418, PMCID: PMC11258959, DOI: 10.1016/j.tetlet.2024.155159.Peer-Reviewed Original ResearchCross-electrophile coupling reactionsHomogeneous reductionCross-electrophile couplingHomogeneous organic reductantsC(sp2)–C(sp3Organic transformationsCoupling reactionMultigram scaleOrganic solventsReduction potentialFunctional groupsOrganic reductantsBu2Ferrocenium/ferroceneMultigramSolventNi/CoReactionSynthesisLong-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt–porphyrin complexes
Alvarez-Hernandez J, Zhang X, Cui K, Deziel A, Hammes-Schiffer S, Hazari N, Piekut N, Zhong M. Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt–porphyrin complexes. Chemical Science 2024, 15: 6800-6815. PMID: 38725508, PMCID: PMC11077573, DOI: 10.1039/d3sc06177a.Peer-Reviewed Original ResearchAza-crown ethersLewis acidAnodic shiftPorphyrin complexesRedox propertiesLong-range electrostatic effectsDensity functional theory calculationsElectrostatic effectsLewis acid bindingCobalt porphyrin complexesMetal aqua complexesPrimary coordination sphereCo II ionsFunctional theory calculationsCoordination sphereReduction electrocatalystsLi +NMR spectroscopyEther groupsCompounds 1Theory calculationsRedox chemistryII ionsBinding constantsReduction potential