Nilay Hazari
John Randolph Huffman Professor of ChemistryDownloadHi-Res Photo
Cards
Contact Info
About
Titles
John Randolph Huffman Professor of Chemistry
Appointments
Chemistry
ChairDualChemistry
ProfessorPrimary
Other Departments & Organizations
- Chemistry
- Discovery to Cure Internship
Research
Publications
2025
Photoelectrocatalytic reduction of CO2 to formate using immobilized molecular manganese catalysts on oxidized porous silicon
Hong Y, Jia X, Stewart-Jones E, Kumar A, Wedal J, Alvarez-Hernandez J, Donley C, Gang A, Gibson N, Hazari N, Houck M, Jeon S, Kim J, Koh H, Mayer J, Mercado B, Nedzbala H, Piekut N, Quist C, Stach E, Zhang Y. Photoelectrocatalytic reduction of CO2 to formate using immobilized molecular manganese catalysts on oxidized porous silicon. Chem 2025, 102462. DOI: 10.1016/j.chempr.2025.102462.Peer-Reviewed Original ResearchConceptsCO2 reduction to formateReduction to formateMolecular catalystsManganese complexesReduction of CO2 to formateReduction of carbon dioxideCO2 to formatePorous siliconBpy ligandsHybrid photoelectrodesManganese catalystsSilatrane groupSun illuminationCO2 reductionCatalystExcellent reproducibilitySemiconducting siliconCurrent densityPorous silicon waferOxidized porous siliconPhotoelectrodeManganeseSilatranesCarbon dioxidePhotoelectrocatalystsStatistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes
Jeon S, Nedzbala H, Huffman B, Pearce A, Donley C, Jia X, Bein G, Choi J, Durand N, Atallah H, Castellano F, Dempsey J, Mayer J, Hazari N, Stach E. Statistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes. Matter 2025, 8: 101919. DOI: 10.1016/j.matt.2024.11.013.Peer-Reviewed Original ResearchConceptsMolecular catalystsCatalytic systemSurface coverageImmobilization of molecular catalystsPositions of heavy atomsScanning transmission electron microscopyTransition metal complexesSurface immobilizationMetal complexesHeterogeneous catalysisHeavy atomsTransmission electron microscopyCombination of scanning transmission electron microscopyCatalystMolecular complexesSolid supportHAADF-STEM imagesElectron microscopyChemical mechanismCatalysisSurfaceAtomsComplexAttachment groupsConvolutional neural network
2024
Transforming Highly Oxidized and Reduced Carbon Feedstocks: Strategies for Catalytic CO2 and CH4 Valorization
Hazari N, Shafaat H, Yang J. Transforming Highly Oxidized and Reduced Carbon Feedstocks: Strategies for Catalytic CO2 and CH4 Valorization. Accounts Of Chemical Research 2024, 57: 3451-3453. PMID: 39686740, DOI: 10.1021/acs.accounts.4c00664.Peer-Reviewed Original ResearchRoom‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
Fernández S, Assaf E, Ahmad S, Travis B, Curley J, Hazari N, Ertem M, Miller A. Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie International Edition 2024, 64: e202416061. PMID: 39571086, DOI: 10.1002/anie.202416061.Peer-Reviewed Original ResearchConceptsTransfer hydrogenationMethanol synthesisIsopropyl formateReduction of CO2 to methanolCO2 reduction to formateCO2 to methanolHydrogen bonding interactionsReduction to formateFormate to methanolEnergy-dense liquid fuelsRoom temperature reductionMulticatalyst systemsOrganometallic catalystsOrganometallic reactionsFormate ionTrifluoromethanesulfonic acidBonding interactionsFischer esterificationFormate estersIsopropanol solventHydrogenMethanolEster substratesElectrocatalystsEnergy storageRoom‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
Fernández S, Assaf E, Ahmad S, Travis B, Curley J, Hazari N, Ertem M, Miller A. Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie 2024, 137 DOI: 10.1002/ange.202416061.Peer-Reviewed Original ResearchConceptsTransfer hydrogenationMethanol synthesisIsopropyl formateReduction of CO2 to methanolCO2 reduction to formateCO2 to methanolHydrogen bonding interactionsReduction to formateFormate to methanolEnergy-dense liquid fuelsRoom temperature reductionMulticatalyst systemsOrganometallic catalystsOrganometallic reactionsFormate ionTrifluoromethanesulfonic acidBonding interactionsFischer esterificationFormate estersIsopropanol solventHydrogenMethanolEster substratesElectrocatalystsEnergy storageLinear Free Energy Relationships Associated with Hydride Transfer From [(6,6′‑R2‑bpy)Re(CO)3H]: A Cautionary Tale in Identifying Hydrogen Bonding Effects in the Secondary Coordination Sphere
Elsby M, Kumar A, Daniels L, Ertem M, Hazari N, Mercado B, Paulus A. Linear Free Energy Relationships Associated with Hydride Transfer From [(6,6′‑R2‑bpy)Re(CO)3H]: A Cautionary Tale in Identifying Hydrogen Bonding Effects in the Secondary Coordination Sphere. Inorganic Chemistry 2024, 63: 19396-19407. PMID: 39344157, DOI: 10.1021/acs.inorgchem.4c03365.Peer-Reviewed Original ResearchConceptsLinear free energy relationshipBpy ligandsThermodynamic hydricitiesHydrogen bondsMetal coordination planeRhenium hydride complexesSolid-state structuresExperimentally determined rate constantsSecondary coordination sphereHydrogen bonding effectsFree energy relationshipX-ray crystallographyDetermined rate constantsHydride complexesKinetic hydricityThermodynamic hydricityCoordination sphereFormate speciesNitrogen donorsTransition stateEnergy relationshipHydride transferFormate complexBpyRate constantsCorrection to “Photoelectrochemical CO2 Reduction to CO Enabled by a Molecular Catalyst Attached to High-Surface-Area Porous Silicon”
Jia X, Stewart-Jones E, Alvarez-Hernandez J, Bein G, Dempsey J, Donley C, Hazari N, Houck M, Li M, Mayer J, Nedzbala H, Powers R. Correction to “Photoelectrochemical CO2 Reduction to CO Enabled by a Molecular Catalyst Attached to High-Surface-Area Porous Silicon”. Journal Of The American Chemical Society 2024, 146: 27214-27214. PMID: 39297561, DOI: 10.1021/jacs.4c12424.Peer-Reviewed Original ResearchKinetic Studies of CO2 Insertion into Metal–Element σ‑Bonds
Hazari N. Kinetic Studies of CO2 Insertion into Metal–Element σ‑Bonds. Accounts Of Chemical Research 2024, 57: 2847-2858. PMID: 39268567, DOI: 10.1021/acs.accounts.4c00440.Peer-Reviewed Original ResearchConceptsOuter-sphere processS bondsPresence of Lewis acidsKinetic studiesDimroth-Reichardt parameterMetal-catalyzed reactionsImproved catalytic performanceC-C bondsInner-sphere processAncillary ligandsCO2 insertionStronger donorAlkyl ligandsElectron-donatingLewis acidSteric bulkSolvent effectsCatalytic performanceReaction solventMetal alkylsNucleophilic attackLigand effectAlkyl groupsGeneration of fuelsSolvent increasesIron Catalysts Supported by a PNP Ligand with an Additional Hemilabile Donor for CO2 Hydrogenation
Wedal J, Virtue K, Bernskoetter W, Hazari N, Mercado B. Iron Catalysts Supported by a PNP Ligand with an Additional Hemilabile Donor for CO2 Hydrogenation. ACS Catalysis 2024, 14: 13903-13914. DOI: 10.1021/acscatal.4c04127.Peer-Reviewed Original ResearchConceptsPincer ligandIron complexesIron catalystCO2 hydrogenation to formateCatalyst resting stateIron hydride speciesHydrogenation to formateEther donorsPNP ligandCationic complexesCO2 hydrogenationHydride speciesActive catalystTurnover frequencyCatalytic performanceCatalytic lifetimeIron centerDehydrogenation reactionCatalyst deactivationCatalystTurnover numberCatalytic turnoverIron systemLigandTheoretical studyHomogeneous organic reductant based on 4,4′- t Bu2-2,2′-bipyridine for cross-electrophile coupling
Charboneau D, Huang H, Barth E, Deziel A, Germe C, Hazari N, Jia X, Kim S, Nahiyan S, Birriel–Rodriguez L, Uehling M. Homogeneous organic reductant based on 4,4′- t Bu2-2,2′-bipyridine for cross-electrophile coupling. Tetrahedron Letters 2024, 145: 155159. PMID: 39036418, PMCID: PMC11258959, DOI: 10.1016/j.tetlet.2024.155159.Peer-Reviewed Original ResearchConceptsCross-electrophile coupling reactionsHomogeneous reductionCross-electrophile couplingHomogeneous organic reductantsC(sp2)–C(sp3Organic transformationsCoupling reactionMultigram scaleOrganic solventsReduction potentialFunctional groupsOrganic reductantsBu2Ferrocenium/ferroceneMultigramSolventNi/CoReactionSynthesis