2019
Visual Cortex Gains Independence from Peripheral Drive before Eye Opening
Gribizis A, Ge X, Daigle TL, Ackman JB, Zeng H, Lee D, Crair MC. Visual Cortex Gains Independence from Peripheral Drive before Eye Opening. Neuron 2019, 104: 711-723.e3. PMID: 31561919, PMCID: PMC6872942, DOI: 10.1016/j.neuron.2019.08.015.Peer-Reviewed Original ResearchConceptsSuperior colliculusEarly functional developmentSpontaneous neuronal activitySecond postnatal weekPrimary visual cortexPeripheral driveCortex maturesRetinal activityPostnatal weekNeuronal activityDirect projectionsVisual cortexMammalian brainSensory peripheryVisual-spatial perceptionEye openingFunctional developmentPeripheral activityColliculusWeeksDistinct pathwaysPathwayRelative functionV1ThalamusSynapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1
Ribic A, Crair MC, Biederer T. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1. Cell Reports 2019, 26: 381-393.e6. PMID: 30625321, PMCID: PMC6345548, DOI: 10.1016/j.celrep.2018.12.069.Peer-Reviewed Original ResearchConceptsCortical plasticityCell adhesion molecule-1Critical periodJuvenile-like plasticityAdhesion molecule-1Primary visual cortexVisual critical periodThalamocortical inputsCortical maturationCircuit maturationV1 plasticityParvalbumin interneuronsFeedforward inhibitionSynaptic cell adhesion molecule 1Cell-autonomous mechanismsBrief lossCortical responsesSynaptic lociMolecule-1Visual cortexSynaptic factorsInterneuronsSpecific knockdownAdulthoodEyes
2018
Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas
Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ, Mehta B, Liu X, Chang B, Zenisek D, Crair MC, Demb JB, Chen B. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018, 560: 484-488. PMID: 30111842, PMCID: PMC6107416, DOI: 10.1038/s41586-018-0425-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninBlindnessCell CycleCell ProliferationCellular ReprogrammingDisease Models, AnimalFemaleGTP-Binding Protein alpha SubunitsHeterotrimeric GTP-Binding ProteinsMaleMiceNeurogenesisNeurogliaRegenerative MedicineRetinal Rod Photoreceptor CellsStem CellsTranscription FactorsTransducinVisual CortexVisual PathwaysConceptsMüller gliaGene transferMG proliferationRod photoreceptorsMammalian retinaCell fate specificationPopulations of stemSubsequent gene transferFate specificationRetinal stem cellsTranscription factorsRetinal neuronsCell cycleDouble mutant miceRegenerative machineryDe novo genesisΒ-cateninStem cellsProgenitor cellsRestoration of visionPrimary visual cortexMutant miceAbsence of injuryPhotoreceptorsRetinal injuryHomeostatic Control of Spontaneous Activity in the Developing Auditory System
Babola TA, Li S, Gribizis A, Lee BJ, Issa JB, Wang HC, Crair MC, Bergles DE. Homeostatic Control of Spontaneous Activity in the Developing Auditory System. Neuron 2018, 99: 511-524.e5. PMID: 30077356, PMCID: PMC6100752, DOI: 10.1016/j.neuron.2018.07.004.Peer-Reviewed Original ResearchConceptsSpiral ganglion neuronsSpontaneous activityAuditory systemDirect neuronal excitationGlutamate releaseEnhanced excitabilityGanglion neuronsUnanesthetized miceSynaptic excitationHearing onsetNeuronal excitationTherapeutic approachesMouse modelSpontaneous burstsCongenital formSynchronized activityHair cellsHomeostatic mechanismsNeuronsHomeostatic controlSimilar frequencyCircuit developmentMiceInfluence developmentDeafness
2014
Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex
Fertuzinhos S, Li M, Kawasawa YI, Ivic V, Franjic D, Singh D, Crair M, Šestan N. Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex. Cell Reports 2014, 6: 938-950. PMID: 24561256, PMCID: PMC3999901, DOI: 10.1016/j.celrep.2014.01.036.Peer-Reviewed Original ResearchConceptsTemporal expression dynamicsExpression dynamicsDistinct biological processesGene coexpression networksSpecific spatiotemporal expressionSmall RNAsNoncoding RNAsTranscriptional differencesTranscriptional eventsSplicing patternsCoexpression networkMRNA interactionsPotential miRNATranscriptional overlapDeep sequencingBiological processesSpatiotemporal expressionMouse neocortexCell typesTranscriptsStudies of neurodevelopmentIntegrated viewTemporal dynamicsCharacteristic setTranscriptomeStructural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1
Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. The Journal Of Comparative Neurology 2014, 522: 900-920. PMID: 23982969, PMCID: PMC3947154, DOI: 10.1002/cne.23452.Peer-Reviewed Original ResearchMeSH KeywordsAlcohol OxidoreductasesAnalysis of VarianceAnimalsAnimals, NewbornCell Adhesion Molecule-1Cell Adhesion MoleculesCo-Repressor ProteinsDNA-Binding ProteinsElectroretinographyFemaleGene Expression Regulation, DevelopmentalImmunoglobulinsMaleMiceMice, Inbred C57BLMice, KnockoutMicroscopy, ImmunoelectronNerve Tissue ProteinsPhosphoproteinsReceptors, Metabotropic GlutamateRetinaRetinal Rod Photoreceptor CellsSynapsesVesicular Glutamate Transport Protein 1ConceptsCell adhesion molecule-1Adhesion molecule-1Ribbon synapsesKO retinasSynaptic cell adhesion molecule 1Molecule-1Mouse photoreceptor ribbon synapsesInner retinal layersPhotoreceptor ribbon synapsesRod visual pathwayEarly postnatal stagesPlexiform layerKO micePhotoreceptor synapsesSynaptic organizationExcitatory synapsesQuantitative ultrastructural analysisRetinal layersKnockout miceOuter nuclearVisual pathwaySynapse developmentElectroretinogram recordingsPostnatal stagesAdhesion molecules
2012
Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening
Furman M, Crair MC. Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening. Journal Of Neurophysiology 2012, 107: 3200-3216. PMID: 22402661, PMCID: PMC3774562, DOI: 10.1152/jn.00943.2011.Peer-Reviewed Original ResearchConceptsSuperior colliculusLateral superior colliculusMedial superior colliculusEye openingP6-7Synaptic strengthBinocular interactionEye-specific segregationPatch-clamp recordingsRetinocollicular synapsesIpsilateral eyeNeonatal miceSlice preparationSynaptic basisMonocular enucleationDendritic arborsSynapse maturationTarget neuronsRetinal axonsDendritic branchingRetinocollicular mapSynaptic connectivityPostsynaptic partnersBinocular competitionSynapse development
2008
Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development
Iwasato T, Inan M, Kanki H, Erzurumlu RS, Itohara S, Crair MC. Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development. Journal Of Neuroscience 2008, 28: 5931-5943. PMID: 18524897, PMCID: PMC2733830, DOI: 10.1523/jneurosci.0815-08.2008.Peer-Reviewed Original ResearchConceptsTC synapsesLayer IV barrel neuronsCritical period plasticityPrimary somatosensory cortexFormation of barrelsAdenylyl cyclase 1Knock-out (KO) miceType 1 adenylyl cyclaseDendritic asymmetryBarrel neuronsThalamocortical synapsesActivity-dependent mannerTrigeminal pathwayFormation of cAMPSomatosensory cortexBarrel cortexBarrel developmentSynapse maturationPresynaptic maturationBarrel hollowsTC axonsSubcortical regionsFunctional maturationMutant miceBRL mice
2002
Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth.
Wang SW, Mu X, Bowers WJ, Kim DS, Plas DJ, Crair MC, Federoff HJ, Gan L, Klein WH. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 2002, 129: 467-77. PMID: 11807038, DOI: 10.1242/dev.129.2.467.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCell DifferentiationCulture TechniquesDNA-Binding ProteinsFemaleGene TargetingHumansMaleMiceMice, KnockoutMicroscopy, FluorescenceNeuritesRetinaRetinal Ganglion CellsTranscription Factor Brn-3Transcription Factor Brn-3ATranscription Factor Brn-3BTranscription Factor Brn-3CTranscription FactorsConceptsDouble knockout miceGanglion cell differentiationRetinal ganglion cell differentiationRetinal ganglion cellsOptic chiasmKnockout miceGanglion cellsMost retinal ganglion cellsRetinal ganglion cell axonsRetinal ganglion cell developmentGanglion cell axonsAxon outgrowthGanglion cell developmentCell differentiationDorsal rootsProjection neuronsTrigeminal ganglionCell axonsRetinal explantsPOU domain transcription factorBrn3bBrn3cMiceChiasmInner ear
1999
The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical Axons
Zhou C, Qiu Y, Pereira F, Crair M, Tsai S, Tsai M. The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical Axons. Neuron 1999, 24: 847-859. PMID: 10624948, DOI: 10.1016/s0896-6273(00)81032-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntimetabolitesAxonsBromodeoxyuridineCarbocyaninesCell DeathCell DifferentiationCerebral CortexCOUP Transcription Factor IDNA-Binding ProteinsFluorescent DyesImmunohistochemistryIn Situ HybridizationMaleMiceMutationNeural PathwaysNeuronsReceptors, GlucocorticoidThalamusTranscription FactorsConceptsSubplate neuronsThalamocortical projectionsCortical layer IVLayer IV neuronsCell deathCorticothalamic connectivityAfferent innervationCerebral cortexThalamocortical axonsLayer IVNervous systemExcessive cell deathFactor INeuronal developmentNeuronsNuclear receptorsPremature cell deathInnervationImproper differentiationImportant regulatorOrphan memberDeathCritical roleDifferentiationFailure