2016
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits
Xu HP, Burbridge TJ, Ye M, Chen M, Ge X, Zhou ZJ, Crair MC. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. Journal Of Neuroscience 2016, 36: 3871-3886. PMID: 27030771, PMCID: PMC4812142, DOI: 10.1523/jneurosci.3549-15.2016.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAmacrine CellsAnimalsAnimals, NewbornCalciumCholera ToxinCholine O-AcetyltransferaseCholinergic AgentsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsIn Vitro TechniquesMiceMice, TransgenicPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsVesicular Glutamate Transport Protein 1Visual PathwaysConceptsEye-specific segregationVisual circuit developmentStarburst amacrine cellsStage III retinal wavesRetinal ganglion cellsRetinal wavesAmacrine cellsGlutamatergic wavesGanglion cellsSpontaneous activityVisual circuitsStage IICircuit developmentHigher-order visual areasNicotinic acetylcholine receptorsRetinal cell typesMammalian visual systemAcetylcholine receptorsΒ2-nAChRsVisual areasPatterned activityPatterning of activityΒ2 subunitCell typesCells
2014
Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors
Burbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors. Neuron 2014, 84: 1049-1064. PMID: 25466916, PMCID: PMC4258148, DOI: 10.1016/j.neuron.2014.10.051.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornCalciumCyclic AMPCyclic GMPCyclooxygenase InhibitorsEye ProteinsFunctional LateralityHomeodomain ProteinsIn Vitro TechniquesMeclofenamic AcidMiceMice, TransgenicPaired Box Transcription FactorsPAX6 Transcription FactorReceptors, NicotinicRepressor ProteinsRetinaRetinal Ganglion CellsRNA, MessengerVisual PathwaysConceptsRetinal wavesCircuit refinementNervous systemNeural circuitsVisual circuit developmentSpontaneous retinal activityRetinal activityRetinorecipient regionsSpontaneous activityAcetylcholine receptorsPharmacological manipulationVisual circuitsSynaptic connectionsVertebrate nervous systemNeural activityOnset of sensationAltered patternCircuit developmentSensory systemsCausal linkEarly developmentActivityBrainReceptors
2011
Visual map development depends on the temporal pattern of binocular activity in mice
Zhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience 2011, 15: 298-307. PMID: 22179110, PMCID: PMC3267873, DOI: 10.1038/nn.3007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornBrain MappingCalciumChannelrhodopsinsCritical Period, PsychologicalFunctional LateralityIn Vitro TechniquesLightLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicNeuronal PlasticityPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsSuperior ColliculiTime FactorsVision, BinocularVisual PathwaysConceptsDorsal lateral geniculate nucleusEye-specific segregationSpontaneous retinal wavesLateral geniculate nucleusPrimary visual cortexMouse visual systemBinocular activityRetinal wavesGeniculate nucleusCircuit refinementSuperior colliculusSpecific temporal featuresVisual cortexBursts of activityDefinitive evidenceVisual systemColliculusBinocularityCortexMiceActivity
2008
Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse
Plas DT, Dhande OS, Lopez JE, Murali D, Thaller C, Henkemeyer M, Furuta Y, Overbeek P, Crair MC. Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse. Journal Of Neuroscience 2008, 28: 7057-7067. PMID: 18614674, PMCID: PMC2667968, DOI: 10.1523/jneurosci.3598-06.2008.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusSuperior colliculusOptic tractRetinotopic map formationRetinal ganglion cell axonsBone morphogenetic proteinCentral brain targetsRetinocollicular map formationGanglion cell axonsMap formationWild-type miceStrains of miceAxon behaviorEarly eye formationAxon orderRetinal cell fateOptic chiasmRGC axonsBrain targetsGeniculate nucleusCell axonsPotential downstream effectorsAxon sortingMorphogenetic proteinsMiceRetinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves
Shah RD, Crair MC. Retinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves. Journal Of Neuroscience 2008, 28: 292-303. PMID: 18171946, PMCID: PMC6671137, DOI: 10.1523/jneurosci.4276-07.2008.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBehavior, AnimalDose-Response Relationship, RadiationElectric StimulationExcitatory Amino Acid AntagonistsIn Vitro TechniquesMiceMice, KnockoutNeuronal PlasticityN-MethylaspartatePatch-Clamp TechniquesQuinoxalinesReceptors, NicotinicRetinaSuperior ColliculiSynapsesSynaptic TransmissionVisual PathwaysConceptsFirst postnatal weekRetinal wavesPostnatal weekSynapse maturationAMPA/NMDA ratioRetinotopic map refinementSpontaneous retinal wavesNicotinic ACh receptorsSecond postnatal weekRetinocollicular synapsesSynapses decreasesPattern of activationNMDA ratioSynaptic strengtheningACh receptorsQuantal amplitudeRetinotopic map formationSuperior colliculusControl synapsesSynaptic changesCoincident activityPlasticity protocolsFirst weekBeta2 subunitWeeks
2007
Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice
Albright MJ, Weston MC, Inan M, Rosenmund C, Crair MC. Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice. Journal Of Neurophysiology 2007, 98: 1610-1625. PMID: 17581849, DOI: 10.1152/jn.00219.2007.Peer-Reviewed Original ResearchConceptsExcitatory postsynaptic potentialsField excitatory postsynaptic potentialsGAP-43Thalamocortical synapsesSynaptic responsesCompetitive glutamate receptor antagonistN-methyl-D-aspartate receptorsAcute brain slice preparationBarrel map formationThalamocortical synaptic responsesWild-type littermate controlsGlutamate receptor antagonistsBrain slice preparationGrowth-associated proteinThalamic innervationThalamic neuronsBarrel mapReceptor antagonistIsoxazolepropionate (AMPA) receptorsPostsynaptic potentialsLayer IVSlice preparationBarrel cortexSynaptic transmissionAMPAR function
2006
Role of Efficient Neurotransmitter Release in Barrel Map Development
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of Efficient Neurotransmitter Release in Barrel Map Development. Journal Of Neuroscience 2006, 26: 2692-2703. PMID: 16525048, PMCID: PMC6675166, DOI: 10.1523/jneurosci.3956-05.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl CyclasesAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBlotting, WesternBrain MappingCalciumDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalGTP-Binding ProteinsIn Vitro TechniquesMiceMice, Inbred C57BLMice, KnockoutMice, Mutant StrainsModels, NeurologicalNeural PathwaysNeuronal PlasticityNeurotransmitter AgentsN-MethylaspartatePatch-Clamp TechniquesSomatosensory CortexSynapsinsThalamusTime FactorsConceptsThalamocortical afferentsEfficient neurotransmitter releaseNeurotransmitter releaseBarrelless miceActivity-dependent processesNeuronal circuit formationAdenylyl cyclase IBarrel mapSynaptic transmissionPresynaptic terminalsPresynaptic functionCircuit formationCortical mapsMutant miceMiceNeuronal modulesRelease efficacyEfficient synaptic transmissionActive zone proteinsZone proteinEfficacyMap developmentRIM proteinsAC1 functionRelease
1999
Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording
Higashi S, Crair MC, Kurotani T, Inokawa H, Toyama K. Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording. Neuroscience 1999, 91: 439-452. PMID: 10366001, DOI: 10.1016/s0306-4522(98)00666-6.Peer-Reviewed Original ResearchConceptsInfraorbital nerve cutNerve cutNormal ratsLayer IVSomatosensory cortexDextran amine labelingThalamocortical slice preparationPostnatal day 7Cytochrome oxidase stainingThalamocortical transmissionThalamocortical connectionsDextran amineThalamocortical axonsThalamic stimulationBarrel cortexFunctional synapsesSlice preparationAxon terminalsVoltage-sensitive dyeTerminal arborsAltered spatial patternDay 7P5-P6RatsBarrel formation
1995
A critical period for long-term potentiation at thalamocortical synapses
Crair M, Malenka R. A critical period for long-term potentiation at thalamocortical synapses. Nature 1995, 375: 325-328. PMID: 7753197, DOI: 10.1038/375325a0.Peer-Reviewed Original ResearchConceptsLong-term potentiationThalamocortical synapsesNMDA receptor-mediated synaptic currentsN-methyl-D-aspartate receptor-dependent long-term potentiationReceptor-mediated synaptic currentsCritical periodRat somatosensory cortexActivity-dependent processesSomatosensory cortexThalamic axonsCortical circuitryNormal connectivitySynaptic currentsTopographical projectionSynaptic connectionsWhisker barrelsLoss of susceptibilitySensory perturbationsLTPPotentiationCortexSynapsesNormal developmentCompelling evidenceLikely mechanism