2003
Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development
Lu HC, She WC, Plas DT, Neumann PE, Janz R, Crair MC. Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development. Nature Neuroscience 2003, 6: 939-947. PMID: 12897788, DOI: 10.1038/nn1106.Peer-Reviewed Original ResearchConceptsLong-term depressionLong-term potentiationAMPA receptor traffickingThalamocortical synapsesBarrelless miceBarrel map formationSynaptic AMPAR traffickingAMPAR subunit GluR1Activity-dependent mechanismsReceptor traffickingAC1 activityFunctional AMPARsSurface GluR1Thalamocortical afferentsMap formationAdenylyl cyclase IBarrel mapSubunit GluR1Cortical map formationAMPAR traffickingProtein kinase A (PKA) activitySynapsesAdenylyl cyclaseMiceImmature state
2001
Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition
Lu H, Gonzalez E, Crair M. Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition. Neuron 2001, 32: 619-634. PMID: 11719203, DOI: 10.1016/s0896-6273(01)00501-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain MappingCritical Period, PsychologicalExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalLong-Term PotentiationMiceMice, Inbred C57BLMice, KnockoutNeuronal PlasticityPiperidinesQuinoxalinesReceptors, AMPAReceptors, N-Methyl-D-AspartateSomatosensory CortexSynapsesThalamusConceptsNMDA receptor subunit compositionReceptor subunit compositionSubunit compositionMouse somatosensory barrel cortexCritical periodNR2A knockout miceCritical period plasticitySomatosensory barrel cortexNMDAR subunit compositionCurrent kineticsAfferent innervationBarrel cortexNR2B subunitKnockout miceSynaptic plasticityNR2A subunitPlasticity windowSubunits
1997
Silent Synapses during Development of Thalamocortical Inputs
Isaac J, Crair M, Nicoll R, Malenka R. Silent Synapses during Development of Thalamocortical Inputs. Neuron 1997, 18: 269-280. PMID: 9052797, DOI: 10.1016/s0896-6273(00)80267-6.Peer-Reviewed Original ResearchConceptsLong-term potentiationThalamocortical synapsesThalamocortical inputsSilent synapsesFunctional synapsesPostnatal day 8Rat somatosensory cortexActivity-dependent mechanismsActivity-dependent increaseEarly postnatal developmentSomatosensory cortexPostsynaptic activityTopographical projectionDay 8Postnatal developmentSynaptic connectionsSynaptic strengthSynapsesCortexSignificant proportionThalamusEarly developmentPotentiationStimulus‐dependent induction of long‐term potentiation in CA1 area of the hippocampus: Experiment and model
Aihara T, Tsukada M, Crair M, Shinomoto S. Stimulus‐dependent induction of long‐term potentiation in CA1 area of the hippocampus: Experiment and model. Hippocampus 1997, 7: 416-426. PMID: 9287081, DOI: 10.1002/(sici)1098-1063(1997)7:4<416::aid-hipo7>3.0.co;2-g.Peer-Reviewed Original Research
1995
A critical period for long-term potentiation at thalamocortical synapses
Crair M, Malenka R. A critical period for long-term potentiation at thalamocortical synapses. Nature 1995, 375: 325-328. PMID: 7753197, DOI: 10.1038/375325a0.Peer-Reviewed Original ResearchConceptsLong-term potentiationThalamocortical synapsesNMDA receptor-mediated synaptic currentsN-methyl-D-aspartate receptor-dependent long-term potentiationReceptor-mediated synaptic currentsCritical periodRat somatosensory cortexActivity-dependent processesSomatosensory cortexThalamic axonsCortical circuitryNormal connectivitySynaptic currentsTopographical projectionSynaptic connectionsWhisker barrelsLoss of susceptibilitySensory perturbationsLTPPotentiationCortexSynapsesNormal developmentCompelling evidenceLikely mechanism