2019
Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1
Ribic A, Crair MC, Biederer T. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1. Cell Reports 2019, 26: 381-393.e6. PMID: 30625321, PMCID: PMC6345548, DOI: 10.1016/j.celrep.2018.12.069.Peer-Reviewed Original ResearchConceptsCortical plasticityCell adhesion molecule-1Critical periodJuvenile-like plasticityAdhesion molecule-1Primary visual cortexVisual critical periodThalamocortical inputsCortical maturationCircuit maturationV1 plasticityParvalbumin interneuronsFeedforward inhibitionSynaptic cell adhesion molecule 1Cell-autonomous mechanismsBrief lossCortical responsesSynaptic lociMolecule-1Visual cortexSynaptic factorsInterneuronsSpecific knockdownAdulthoodEyes
2013
Laminar and Columnar Development of Barrel Cortex Relies on Thalamocortical Neurotransmission
Li H, Fertuzinhos S, Mohns E, Hnasko TS, Verhage M, Edwards R, Sestan N, Crair MC. Laminar and Columnar Development of Barrel Cortex Relies on Thalamocortical Neurotransmission. Neuron 2013, 79: 970-986. PMID: 24012009, PMCID: PMC3768017, DOI: 10.1016/j.neuron.2013.06.043.Peer-Reviewed Original ResearchConceptsThalamocortical neurotransmissionCortical developmentNeuronal differentiationGlutamatergic synaptic transmissionSuperficial cortical laminaeEarly cortical developmentActivity-dependent factorsThalamocortical neuronsSomatosensory cortexCortical cytoarchitectureCortical laminationSynaptic transmissionNeuronal activityCortical laminaeCytoarchitectonic criteriaExtrinsic activityNeurotransmissionCortical columnsMolecular cuesNeuronsMorphologic developmentLittle evidenceColumnar developmentGene expressionExtrinsic factors
2008
Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development
Iwasato T, Inan M, Kanki H, Erzurumlu RS, Itohara S, Crair MC. Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development. Journal Of Neuroscience 2008, 28: 5931-5943. PMID: 18524897, PMCID: PMC2733830, DOI: 10.1523/jneurosci.0815-08.2008.Peer-Reviewed Original ResearchConceptsTC synapsesLayer IV barrel neuronsCritical period plasticityPrimary somatosensory cortexFormation of barrelsAdenylyl cyclase 1Knock-out (KO) miceType 1 adenylyl cyclaseDendritic asymmetryBarrel neuronsThalamocortical synapsesActivity-dependent mannerTrigeminal pathwayFormation of cAMPSomatosensory cortexBarrel cortexBarrel developmentSynapse maturationPresynaptic maturationBarrel hollowsTC axonsSubcortical regionsFunctional maturationMutant miceBRL mice
2007
Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice
Albright MJ, Weston MC, Inan M, Rosenmund C, Crair MC. Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice. Journal Of Neurophysiology 2007, 98: 1610-1625. PMID: 17581849, DOI: 10.1152/jn.00219.2007.Peer-Reviewed Original ResearchConceptsExcitatory postsynaptic potentialsField excitatory postsynaptic potentialsGAP-43Thalamocortical synapsesSynaptic responsesCompetitive glutamate receptor antagonistN-methyl-D-aspartate receptorsAcute brain slice preparationBarrel map formationThalamocortical synaptic responsesWild-type littermate controlsGlutamate receptor antagonistsBrain slice preparationGrowth-associated proteinThalamic innervationThalamic neuronsBarrel mapReceptor antagonistIsoxazolepropionate (AMPA) receptorsPostsynaptic potentialsLayer IVSlice preparationBarrel cortexSynaptic transmissionAMPAR function
2006
Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling
Inan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling. Journal Of Neuroscience 2006, 26: 4338-4349. PMID: 16624954, PMCID: PMC6674004, DOI: 10.1523/jneurosci.3745-05.2006.Peer-Reviewed Original ResearchConceptsBarrel map formationLayer IV neuronsActivity-dependent developmentAMPA receptor functionCAMP/PKA-dependent pathwayLong-term potentiationThalamocortical synapsesThalamocortical afferentsTC synapsesThalamocortical synapseBarrel cortexPKA targetsBarrel patternCortical developmentPKA-dependent pathwayBrain circuitryPostsynaptic processesSynapse formationReceptor functionCAMP-dependent protein kinaseHebbian mechanismsDevelopmental increaseMiceSynapsesActivity-dependent modelsRole of Efficient Neurotransmitter Release in Barrel Map Development
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of Efficient Neurotransmitter Release in Barrel Map Development. Journal Of Neuroscience 2006, 26: 2692-2703. PMID: 16525048, PMCID: PMC6675166, DOI: 10.1523/jneurosci.3956-05.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl CyclasesAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBlotting, WesternBrain MappingCalciumDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalGTP-Binding ProteinsIn Vitro TechniquesMiceMice, Inbred C57BLMice, KnockoutMice, Mutant StrainsModels, NeurologicalNeural PathwaysNeuronal PlasticityNeurotransmitter AgentsN-MethylaspartatePatch-Clamp TechniquesSomatosensory CortexSynapsinsThalamusTime FactorsConceptsThalamocortical afferentsEfficient neurotransmitter releaseNeurotransmitter releaseBarrelless miceActivity-dependent processesNeuronal circuit formationAdenylyl cyclase IBarrel mapSynaptic transmissionPresynaptic terminalsPresynaptic functionCircuit formationCortical mapsMutant miceMiceNeuronal modulesRelease efficacyEfficient synaptic transmissionActive zone proteinsZone proteinEfficacyMap developmentRIM proteinsAC1 functionRelease
2001
Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition
Lu H, Gonzalez E, Crair M. Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition. Neuron 2001, 32: 619-634. PMID: 11719203, DOI: 10.1016/s0896-6273(01)00501-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain MappingCritical Period, PsychologicalExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalLong-Term PotentiationMiceMice, Inbred C57BLMice, KnockoutNeuronal PlasticityPiperidinesQuinoxalinesReceptors, AMPAReceptors, N-Methyl-D-AspartateSomatosensory CortexSynapsesThalamusConceptsNMDA receptor subunit compositionReceptor subunit compositionSubunit compositionMouse somatosensory barrel cortexCritical periodNR2A knockout miceCritical period plasticitySomatosensory barrel cortexNMDAR subunit compositionCurrent kineticsAfferent innervationBarrel cortexNR2B subunitKnockout miceSynaptic plasticityNR2A subunitPlasticity windowSubunits
1999
The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical Axons
Zhou C, Qiu Y, Pereira F, Crair M, Tsai S, Tsai M. The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical Axons. Neuron 1999, 24: 847-859. PMID: 10624948, DOI: 10.1016/s0896-6273(00)81032-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntimetabolitesAxonsBromodeoxyuridineCarbocyaninesCell DeathCell DifferentiationCerebral CortexCOUP Transcription Factor IDNA-Binding ProteinsFluorescent DyesImmunohistochemistryIn Situ HybridizationMaleMiceMutationNeural PathwaysNeuronsReceptors, GlucocorticoidThalamusTranscription FactorsConceptsSubplate neuronsThalamocortical projectionsCortical layer IVLayer IV neuronsCell deathCorticothalamic connectivityAfferent innervationCerebral cortexThalamocortical axonsLayer IVNervous systemExcessive cell deathFactor INeuronal developmentNeuronsNuclear receptorsPremature cell deathInnervationImproper differentiationImportant regulatorOrphan memberDeathCritical roleDifferentiationFailureAltered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording
Higashi S, Crair MC, Kurotani T, Inokawa H, Toyama K. Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording. Neuroscience 1999, 91: 439-452. PMID: 10366001, DOI: 10.1016/s0306-4522(98)00666-6.Peer-Reviewed Original ResearchConceptsInfraorbital nerve cutNerve cutNormal ratsLayer IVSomatosensory cortexDextran amine labelingThalamocortical slice preparationPostnatal day 7Cytochrome oxidase stainingThalamocortical transmissionThalamocortical connectionsDextran amineThalamocortical axonsThalamic stimulationBarrel cortexFunctional synapsesSlice preparationAxon terminalsVoltage-sensitive dyeTerminal arborsAltered spatial patternDay 7P5-P6RatsBarrel formation
1997
Silent Synapses during Development of Thalamocortical Inputs
Isaac J, Crair M, Nicoll R, Malenka R. Silent Synapses during Development of Thalamocortical Inputs. Neuron 1997, 18: 269-280. PMID: 9052797, DOI: 10.1016/s0896-6273(00)80267-6.Peer-Reviewed Original ResearchConceptsLong-term potentiationThalamocortical synapsesThalamocortical inputsSilent synapsesFunctional synapsesPostnatal day 8Rat somatosensory cortexActivity-dependent mechanismsActivity-dependent increaseEarly postnatal developmentSomatosensory cortexPostsynaptic activityTopographical projectionDay 8Postnatal developmentSynaptic connectionsSynaptic strengthSynapsesCortexSignificant proportionThalamusEarly developmentPotentiation
1995
A critical period for long-term potentiation at thalamocortical synapses
Crair M, Malenka R. A critical period for long-term potentiation at thalamocortical synapses. Nature 1995, 375: 325-328. PMID: 7753197, DOI: 10.1038/375325a0.Peer-Reviewed Original ResearchConceptsLong-term potentiationThalamocortical synapsesNMDA receptor-mediated synaptic currentsN-methyl-D-aspartate receptor-dependent long-term potentiationReceptor-mediated synaptic currentsCritical periodRat somatosensory cortexActivity-dependent processesSomatosensory cortexThalamic axonsCortical circuitryNormal connectivitySynaptic currentsTopographical projectionSynaptic connectionsWhisker barrelsLoss of susceptibilitySensory perturbationsLTPPotentiationCortexSynapsesNormal developmentCompelling evidenceLikely mechanism