2024
Salt partitioning and transport in polyamide reverse osmosis membranes at ultrahigh pressures
Pataroque K, Wu J, He J, Fan H, Mahajan S, Guo K, Le J, Au K, Wang L, Li Y, Hoek E, Elimelech M. Salt partitioning and transport in polyamide reverse osmosis membranes at ultrahigh pressures. Journal Of Membrane Science Letters 2024, 4: 100079. DOI: 10.1016/j.memlet.2024.100079.Peer-Reviewed Original ResearchSalt permeanceSalt partition coefficientReverse osmosisPolyamide reverse osmosis membranesAffecting membrane performancePolyamide layer thicknessFeed salt concentrationReverse osmosis membranesQuartz crystal microbalanceDead-end cellStructure-performance relationshipRO membranesMembrane performancePolyamide layerOsmosis membranesWater transport mechanismFeed salinityOsmotic deswellingFrictional interactionPore sizeFeed concentrationNon-equilibrium molecular dynamics simulationsLayer thicknessPermeanceCrystal microbalanceAnalysis of energy, water, land and cost implications of zero and minimal liquid discharge desalination technologies
O’Connell M, Rajendran N, Elimelech M, Gilron J, Dunn J. Analysis of energy, water, land and cost implications of zero and minimal liquid discharge desalination technologies. Nature Water 2024, 2: 1116-1127. DOI: 10.1038/s44221-024-00327-1.Peer-Reviewed Original ResearchPilot Scale Demonstration of Low-Salt-Rejection Reverse Osmosis (LSRRO) Desalination of High Salinity Brines
Van Houghton B, Rosenblum J, Lampi K, Beaudry E, Herron J, del Cerro M, De Finnda C, Elimelech M, Gilron J, Cath T. Pilot Scale Demonstration of Low-Salt-Rejection Reverse Osmosis (LSRRO) Desalination of High Salinity Brines. ACS ES&T Water 2024, 4: 5089-5104. DOI: 10.1021/acsestwater.4c00673.Peer-Reviewed Original ResearchLow-salt-rejection reverse osmosisSeawater reverse osmosisLow salt rejectionReverse osmosisWater recoveryConventional seawater reverse osmosisHydraulic pressureTreating hypersaline brinesMembrane fabricationPilot scale demonstrationsHigh-salinity brineThermal desalinationFeed streamProcess configurationsScale demonstrationOsmosisStream compositionWater permeabilityWater fluxNaCl solutionTDS concentrationDesalinationMembrane integrity testEnergy consumptionSalinity brineHyping direct seawater electrolysis hinders electrolyzer development
Hausmann J, Winter L, Khan M, Elimelech M, Kibria G, Sontheimer T, Menezes P. Hyping direct seawater electrolysis hinders electrolyzer development. Joule 2024, 8: 2436-2442. DOI: 10.1016/j.joule.2024.07.005.Peer-Reviewed Original ResearchWater splittingSeawater electrolysisElectrochemical oxidation reactionElectrochemical redox reactionsDevelopment of electrocatalystsConversion of CO2Direct seawater electrolysisStructure-activity relationsWater purification membranesEnergy catalysisOxygen catalysisSeawater splittingCO2 electrolysisHeterogeneous catalysisElectrocatalytic processInorganic chemistsTechnische Universitat BerlinZero-emission energy carrierMembrane-based technologiesLife cycle analysisRedox reactionsWater electrolysisOxidation reactionNitrogen-based fuelsHeavy-duty transportMolecular simulations of organic solvent transport in dense polymer membranes: Solution-diffusion or pore-flow mechanism?
He J, Fan H, Elimelech M, Li Y. Molecular simulations of organic solvent transport in dense polymer membranes: Solution-diffusion or pore-flow mechanism? Journal Of Membrane Science 2024, 708: 123055. DOI: 10.1016/j.memsci.2024.123055.Peer-Reviewed Original ResearchDense polymer membranesPolymer membranesOrganic solventsSolution-diffusion modelHigh-performance polymer membranesSolvent transportFractional free volumeMolecular-level guidanceOrganic solvent nanofiltrationMolecular dynamics simulationsPore flow mechanismNon-equilibrium molecular dynamics simulationsMembrane pore sizeSolvent sizeSolvent permeanceSolvent nanofiltrationSeparation applicationsTransport mechanisms of waterMolecular simulationsFree volumeDynamics simulationsWater transport mechanismSolventReverse osmosisSolution-diffusionDesigning membranes with specific binding sites for selective ion separations
Violet C, Ball A, Heiranian M, Villalobos L, Zhang J, Uralcan B, Kulik H, Haji-Akbari A, Elimelech M. Designing membranes with specific binding sites for selective ion separations. Nature Water 2024, 2: 706-718. DOI: 10.1038/s44221-024-00279-6.Peer-Reviewed Original ResearchMembrane nanochannelsFunctional groupsCovalent organic frameworksMetal-organic frameworksSelective ion separationIon binding energiesMembrane material designSelective ion transportIon binding affinityEnergy storage technologiesOrganic frameworksIon separationSynthetic methodNanostructured materialsBinding sitesBinding energyMaterial designDesign membranesDrug discoveryAngstrom scaleChemical interactionIonsChemical featuresNanochannelsIon transportSpatial patterns and environmental functions of dissolved organic matter in grassland soils of China
Zhou P, Tian L, Graham N, Song S, Zhao R, Siddique M, Hu Y, Cao X, Lu Y, Elimelech M, Yu W. Spatial patterns and environmental functions of dissolved organic matter in grassland soils of China. Nature Communications 2024, 15: 6356. PMID: 39069514, PMCID: PMC11284229, DOI: 10.1038/s41467-024-50745-8.Peer-Reviewed Original ResearchConceptsFunction of dissolved organic matterOrganic matterSoil dissolved organic matterSouthern region of ChinaHumic-likeRegions of ChinaSoil DOMAnnual ecosystem exchangeContinental scaleSpatial patternsDOMGrassland soilsSpatial associationDry seasonEnvironmental functionsSouthern regionEcosystem exchangeSoils of ChinaEcosystem productivityChinaAquatic environmentHumified fractionsSoilGrasslandGeochemistryDepolymerization mechanisms and closed-loop assessment in polyester waste recycling
Cao J, Liang H, Yang J, Zhu Z, Deng J, Li X, Elimelech M, Lu X. Depolymerization mechanisms and closed-loop assessment in polyester waste recycling. Nature Communications 2024, 15: 6266. PMID: 39048542, PMCID: PMC11269573, DOI: 10.1038/s41467-024-50702-5.Peer-Reviewed Original ResearchSpace time yieldPoly(ethylene terephthalateDimethyl terephthalateC-O bond cleavageDensity functional theory calculationsActivation of CH3OHFunctional theory calculationsLife cycle assessmentIn situ spectroscopyBond activationBond cleavageCycle assessmentGreenhouse-gas emissionsTheory calculationsReaction pathwaysOxygen-vacancyClosed-loop recyclingWaste managementTime yieldWaste recyclingDepolymerization mechanismWaste accumulationCH3OHTerephthalatePET depolymerizationTrends, risks and opportunities in environmental nanotechnology
Huang X, Auffan M, Eckelman M, Elimelech M, Kim J, Rose J, Zuo K, Li Q, Alvarez P. Trends, risks and opportunities in environmental nanotechnology. Nature Reviews Earth & Environment 2024, 5: 572-587. DOI: 10.1038/s43017-024-00567-5.Peer-Reviewed Original ResearchEngineered nanomaterialsRelease of ENMsRisks of engineered nanomaterialsENM concentrationsImpact of engineered nanomaterialsPredicted no-effect concentrationWater treatmentHealth risksEnvironmental applicationsNo-effect concentrationPotential environmental applicationsPotential dischargeEnvironmental health risksLife cycle analysisSynthesized materialsReduced toxicityPollution remediationSewage effluentIncidental releaseEnvironmental nanotechnologyReduced riskEnvironmental impactRiskHealth impactsEnvironmental benefitsThe solution-diffusion model for water transport in reverse osmosis: What went wrong?
Fan H, Heiranian M, Elimelech M. The solution-diffusion model for water transport in reverse osmosis: What went wrong? Desalination 2024, 580: 117575. DOI: 10.1016/j.desal.2024.117575.Peer-Reviewed Original ResearchSolution-diffusion modelRO membranesReverse osmosisWater transport mechanismPore flow modelDesalination membranesDesalination technologiesFrictional interactionTransport mechanismWater transportConcentration gradient of waterFree volumeMembrane poresEnergy efficiencyOsmosisLow costPressure gradientState-of-the-artTheoretical findingsWater flowState-of-the-art desalination technologiesConcentration gradientPorePolyamide reverse osmosis membrane compaction and relaxation: Mechanisms and implications for desalination performance
Wu J, He J, Quezada-Renteria J, Le J, Au K, Guo K, Xiao M, Wang X, Dlamini D, Fan H, Pataroque K, Suleiman Y, Shahbazmohamadi S, Elimelech M, Li Y, Hoek E. Polyamide reverse osmosis membrane compaction and relaxation: Mechanisms and implications for desalination performance. Journal Of Membrane Science 2024, 706: 122893. DOI: 10.1016/j.memsci.2024.122893.Peer-Reviewed Original ResearchPA layerCrosslinking degreeNEMD simulationsComposite RO membranePA RO membranesComposite reverse osmosisRelaxation behaviorMechanism of compactionFree volume changesViscous flow of waterDesalination performanceRO membranesReverse osmosisSelective layerInterfacial polymerizationMembrane compactionViscoelastic propertiesViscous flowWater permeationPA filmInitial permeabilityMonomer ratioFlow of waterPermeation experimentsSimulationScalable weaving of resilient membranes with on-demand superwettability for high-performance nanoemulsion separations
Wang Y, Villalobos L, Liang L, Zhu B, Li J, Chen C, Bai Y, Zhang C, Dong L, An Q, Meng H, Zhao Y, Elimelech M. Scalable weaving of resilient membranes with on-demand superwettability for high-performance nanoemulsion separations. Science Advances 2024, 10: eadn3289. PMID: 38924410, PMCID: PMC11204282, DOI: 10.1126/sciadv.adn3289.Peer-Reviewed Original ResearchThe physical basis for solvent flow in organic solvent nanofiltration
Fan H, He J, Heiranian M, Pan W, Li Y, Elimelech M. The physical basis for solvent flow in organic solvent nanofiltration. Science Advances 2024, 10: eado4332. PMID: 38875330, PMCID: PMC11177934, DOI: 10.1126/sciadv.ado4332.Peer-Reviewed Original ResearchOrganic solvent nanofiltrationOrganic solvent nanofiltration membranesMembrane pore structureSolvent nanofiltrationNonequilibrium molecular dynamics simulationsMolecular dynamics simulationsPore structureSolvent transport mechanismsSolvent moleculesSolvent flowSolvent permeanceSolvent affinityOSN membranesFlory-Rehner theoryDynamics simulationsSolvent transportMembrane technologyChemical separationNanofiltrationPressure gradientPermeanceStructureTransport mechanismMoleculesExtended Donnan model for ion partitioning in charged nanopores: Application to ion-exchange membranes
Wang R, Biesheuvel P, Elimelech M. Extended Donnan model for ion partitioning in charged nanopores: Application to ion-exchange membranes. Journal Of Membrane Science 2024, 705: 122921. DOI: 10.1016/j.memsci.2024.122921.Peer-Reviewed Original ResearchIon-exchange membranesExchange membraneInteraction of ionsCoulomb interaction of ionsIon partitioningCharged pore wallsElectrostatic modelChemical potential of ionsArrangement of ionsPore solutionPotentials of ionsDonnan modelDonnan equationPore sizeCylindrical poresPore wallsDistribution of ionsPolymer chargeEffect of ionsAqueous solutionPoreIon activity coefficientsSalt concentrationIonsGeometric factorsInhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature
Kaneda M, Cao T, Dong D, Zhang X, Chen Y, Zhang J, Bryantsev V, Zhong M, Elimelech M. Inhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature. Water Research 2024, 258: 121705. PMID: 38776744, DOI: 10.1016/j.watres.2024.121705.Peer-Reviewed Original ResearchInhibition efficiencySilicic acid solutionAcid solutionPolymerization inhibitorIonic strengthMolecular dynamics simulationsDivalent ionsFunctional polymersAmmonium groupsSodium ionsInorganic cationsDynamics simulationsDivalent inorganic cationsInhibition performanceIonsSolution conditionsCationsPolymerSolution temperatureEffective stabilizationElevated temperaturesSilicaSilica scale formationSilica scaleSaline industrial wastewaterMore resilient polyester membranes for high-performance reverse osmosis desalination
Yao Y, Zhang P, Sun F, Zhang W, Li M, Sha G, Teng L, Wang X, Huo M, DuChanois R, Cao T, Boo C, Zhang X, Elimelech M. More resilient polyester membranes for high-performance reverse osmosis desalination. Science 2024, 384: 333-338. PMID: 38669571, DOI: 10.1126/science.adk0632.Peer-Reviewed Original ResearchThin-film composite reverse osmosis membranesComposite reverse osmosis membranesReverse osmosis membranesOsmosis membranesPolyamide membranesPoor chlorine resistanceExcellent water permeabilityReverse osmosis desalinationWater-salt selectivityWater permeabilityPolyester membraneBoron rejectionSalt rejectionFouling propensityTrimesoyl chlorideOsmosis desalinationInterfacial polymerizationHigh rejectionLow-energy surfacesPolyamide filmsChlorine resistancePrevent foulingWater purificationDesalinationFoulingIntensifying electrified flow-through water treatment technologies via local environment modification
Huo Z, Wang X, Huang X, Elimelech M. Intensifying electrified flow-through water treatment technologies via local environment modification. Frontiers Of Environmental Science & Engineering 2024, 18: 69. DOI: 10.1007/s11783-024-1829-y.Peer-Reviewed Original ResearchFlow-through electrodeFlow-through technologyEnhanced local electric fieldEfficient contaminant removalWater treatment applicationsComplex water matricesLocal electric fieldInduced spatial confinementNear-complete removalReaction kineticsTreatment technologiesMass transportContaminant removalWater treatmentWater matricesPersistent contaminantsGeometry adjustmentModification approachReaction rateElectric fieldStructural optimizationTreatment applicationsElectrodeEnvironment modificationSpatial confinementUltrastable ceramic-based metal–organic framework membranes with missing linkers for robust desalination
Dong Y, Lyu Q, Lin L, Violet C, Lin B, Han Y, Tang C, Yu H, Elimelech M. Ultrastable ceramic-based metal–organic framework membranes with missing linkers for robust desalination. Nature Water 2024, 2: 464-474. DOI: 10.1038/s44221-024-00218-5.Peer-Reviewed Original ResearchHigh-performance desalination membranesPolymeric membranesWater treatment applicationsMetal–organic framework membranesMissing-linker defectsUiO-66 membraneDesalination membranesLow energy barrierMolecular simulation resultsHarsh chemical conditionsMissing linkersUiO-66Water clustersIndustrial wastewater treatmentEnergy barrierIncreased water fluxDesalination performanceDesalination applicationsTreatment applicationsAlkaline conditionsNanoporous membranesInsufficient stabilityWastewater treatmentPore sizeSimulation resultsHeat diffusion during thin-film composite membrane formation
Deshmukh A, Lienhard J, Elimelech M. Heat diffusion during thin-film composite membrane formation. Journal Of Membrane Science 2024, 696: 122493. DOI: 10.1016/j.memsci.2024.122493.Peer-Reviewed Original ResearchThin-film compositeInterfacial temperature riseInterfacial polymerizationInterfacial temperatureComposite membrane formationProperties of solventsHigh separation performanceThin-film composite membranesTemperature riseTransient heat conduction modelThermal propertiesRobust mechanical supportPolymeric supportCombination of analytical solutionsSelective layerTransient heat conductionThermal effusivitiesSeparation performanceChemical structureReaction interfaceHeat conduction modelInterlayer materialReverse osmosisMetal interlayerSupport layerTowards a molecular-scale theory for the removal of natural organic matter by coagulation with trivalent metals
Liu M, Graham N, Gregory J, Elimelech M, Yu W. Towards a molecular-scale theory for the removal of natural organic matter by coagulation with trivalent metals. Nature Water 2024, 2: 285-294. DOI: 10.1038/s44221-024-00212-x.Peer-Reviewed Original Research