2022
Depolarizing NaV and Hyperpolarizing KV Channels Are Co-Trafficked in Sensory Neurons
Higerd-Rusli GP, Alsaloum M, Tyagi S, Sarveswaran N, Estacion M, Akin EJ, Dib-Hajj FB, Liu S, Sosniak D, Zhao P, Dib-Hajj SD, Waxman SG. Depolarizing NaV and Hyperpolarizing KV Channels Are Co-Trafficked in Sensory Neurons. Journal Of Neuroscience 2022, 42: 4794-4811. PMID: 35589395, PMCID: PMC9188389, DOI: 10.1523/jneurosci.0058-22.2022.Peer-Reviewed Original ResearchIon channel traffickingMembrane proteinsChannel traffickingAxonal membrane proteinsTransport vesiclesPhysiological functionsSame vesiclesAxonal proteinsSpecific transport vesiclesIon channelsTrafficking of NaDiverse physiological functionsExcitability disordersDifferent physiological functionsDistinct ion channelsSensory neuron membraneSensory neuronsDistinct functional classesDistinct functional rolesNormal neuronal excitabilityTrafficking mechanismsNeuronal excitabilityPlasma membraneTherapeutic strategiesPrecise regulationStem cell-derived sensory neurons modelling inherited erythromelalgia: normalization of excitability
Alsaloum M, Labau JIR, Liu S, Effraim P, Waxman SG. Stem cell-derived sensory neurons modelling inherited erythromelalgia: normalization of excitability. Brain 2022, 146: 359-371. PMID: 35088838, PMCID: PMC10060693, DOI: 10.1093/brain/awac031.Peer-Reviewed Original ResearchConceptsSensory neuronsPluripotent stem cell-derived sensory neuronsDynamic clamp electrophysiologyMediators of painUnmet healthcare needsEffective therapeutic approachErythromelalgia mutationAmeliorate painNeuronal hyperexcitabilityPain disordersClinical studiesNeuronal excitabilityPreclinical studiesTherapeutic approachesEffective treatmentNaV1.7 currentsBaseline levelsClamp electrophysiologyHealthcare needsNav1.7 channelsPainErythromelalgiaHyperexcitabilityFunction mutationsNav1.7Evaluation of the Content of Ophthalmology Fellowship Program Web sites
Alsaloum P, Alsaloum M, Kim T, Zheng D, Valentim C, Muste J, Goshe J, Singh R. Evaluation of the Content of Ophthalmology Fellowship Program Web sites. Journal Of Academic Ophthalmology 2022, 14: e127-e132. PMID: 37388469, PMCID: PMC9928003, DOI: 10.1055/s-0042-1747673.Peer-Reviewed Original ResearchMAIN OUTCOMEOphthalmology subspecialtiesCross-sectional studyFellowship programsHospital affiliationWellness programsSignificant heterogeneitySubspecialtySurgical statisticsSignificant differencesCurrent fellowsOutcomesProgram demographicsDemographic criteriaProgram Web sitesCase diversityCriteriaAverage numberProgram description
2021
Lacosamide Inhibition of NaV1.7 Channels Depends on its Interaction With the Voltage Sensor Domain and the Channel Pore
Labau JIR, Alsaloum M, Estacion M, Tanaka B, Dib-Hajj FB, Lauria G, Smeets HJM, Faber CG, Dib-Hajj S, Waxman SG. Lacosamide Inhibition of NaV1.7 Channels Depends on its Interaction With the Voltage Sensor Domain and the Channel Pore. Frontiers In Pharmacology 2021, 12: 791740. PMID: 34992539, PMCID: PMC8724789, DOI: 10.3389/fphar.2021.791740.Peer-Reviewed Original ResearchContributions of NaV1.8 and NaV1.9 to excitability in human induced pluripotent stem-cell derived somatosensory neurons
Alsaloum M, Labau JIR, Liu S, Estacion M, Zhao P, Dib-Hajj F, Waxman SG. Contributions of NaV1.8 and NaV1.9 to excitability in human induced pluripotent stem-cell derived somatosensory neurons. Scientific Reports 2021, 11: 24283. PMID: 34930944, PMCID: PMC8688473, DOI: 10.1038/s41598-021-03608-x.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAutopsyCell DifferentiationElectrophysiologyHumansImmunohistochemistryInduced Pluripotent Stem CellsMembrane PotentialsMutationNAV1.8 Voltage-Gated Sodium ChannelNAV1.9 Voltage-Gated Sodium ChannelNeuronsNeurosciencesPainPatch-Clamp TechniquesProtein IsoformsSensory Receptor CellsSomatosensory CortexConceptsNeuronal excitabilitySomatosensory neuronsPluripotent stem cell-derived sensory neuronsDynamic clamp electrophysiologyTreatment of painPromising novel modalityVoltage-gated sodium channelsSodium channel isoformsNeuronal membrane potentialGenetic knockout modelsNav1.9 currentsPharmacologic blockSensory neuronsNav1.8Cellular correlatesRepetitive firingClamp electrophysiologyExcitabilityNeuronal backgroundNovel modalityChannel isoformsSodium channelsNeuronsNav1.9Knockout modelsiPSCs and DRGs: stepping stones to new pain therapies
Alsaloum M, Waxman SG. iPSCs and DRGs: stepping stones to new pain therapies. Trends In Molecular Medicine 2021, 28: 110-122. PMID: 34933815, PMCID: PMC8810720, DOI: 10.1016/j.molmed.2021.11.005.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsHuman DRG neuronsDRG neuronsDorsal root ganglion neuronsTreatment of painNovel pain therapeuticsNew pain therapiesVoltage-gated sodium channelsPain therapyPain therapeuticsGanglion neuronsTreatment optionsPain signalsSpinal cordPreclinical resultsPreclinical platformSensory neuronsPainNeuronsSodium channelsClinical translationIPSCsBlockadeCordTherapyExcitabilityA novel gain-of-function sodium channel β2 subunit mutation in idiopathic small fiber neuropathy
Alsaloum M, Labau JIR, Sosniak D, Zhao P, Almomani R, Gerrits M, Hoeijmakers JGJ, Lauria G, Faber CG, Waxman SG, Dib-Hajj S. A novel gain-of-function sodium channel β2 subunit mutation in idiopathic small fiber neuropathy. Journal Of Neurophysiology 2021, 126: 827-839. PMID: 34320850, PMCID: PMC8461825, DOI: 10.1152/jn.00184.2021.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathyVoltage-gated sodium channel α-subunitsDorsal root ganglion neuronsSodium channel β subunitsSodium channel α subunitDiscernible causeChannel α-subunitsGanglion neuronsChannel β subunitΒ2 subunitIdiopathic small fiber neuropathySodium currentTetrodotoxin-resistant sodium currentTetrodotoxin-sensitive sodium currentPainful diabetic neuropathySubset of patientsUnmyelinated C-fibersCurrent-clamp analysisAction potential firingHuman pain disordersFirst evidenceNeuropathic painDiabetic neuropathyNeuronal hyperexcitabilityPain disordersPaclitaxel increases axonal localization and vesicular trafficking of Nav1.7
Akin EJ, Alsaloum M, Higerd GP, Liu S, Zhao P, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain 2021, 144: 1727-1737. PMID: 33734317, PMCID: PMC8320304, DOI: 10.1093/brain/awab113.Peer-Reviewed Original ResearchConceptsDorsal root ganglion neuronsChemotherapy-induced peripheral neuropathyGanglion neuronsSensory axonsNav1.7 channelsPTX treatmentSensory neuronsHuman sensory neuronsEffect of paclitaxelSodium channel Nav1.7Chemotherapy drug paclitaxelAxonal vesicular transportConcentrations of paclitaxelNav1.7 mRNAInflammatory mediatorsNav1.7 expressionPeripheral neuropathyInflammatory milieuPrimary afferentsInflammatory conditionsChannel expressionChannel Nav1.7Nav1.7Increased expressionAxonal localization
2020
Status of peripheral sodium channel blockers for non-addictive pain treatment
Alsaloum M, Higerd GP, Effraim PR, Waxman SG. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nature Reviews Neurology 2020, 16: 689-705. PMID: 33110213, DOI: 10.1038/s41582-020-00415-2.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPain conditionsPain treatmentDose-limiting adverse effectUnmet health care needsAdverse effectsMediators of painMultiple pain conditionsCommon pain conditionsCardiac adverse effectsTrigeminal ganglion neuronsTreatment of painDorsal root gangliaPeripheral nervous systemHuman pain disordersSodium channel blockersHealth care needsVoltage-gated sodium channelsImproved therapeutic agentsCurrent medicationsPain disordersPain managementGanglion neuronsRoot gangliaSafe treatmentClinical trials
2019
A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy
Alsaloum M, Estacion M, Almomani R, Gerrits MM, Bönhof GJ, Ziegler D, Malik R, Ferdousi M, Lauria G, Merkies IS, Faber CG, Dib-Hajj S, Waxman S. A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy. Molecular Pain 2019, 15: 1744806919849802. PMID: 31041876, PMCID: PMC6510061, DOI: 10.1177/1744806919849802.Peer-Reviewed Original ResearchConceptsDiabetic peripheral neuropathyPeripheral neuropathyNeuropathic painDiabetic peripheral neuropathy patientsPainful diabetic peripheral neuropathyDorsal root ganglion neuronsPainful diabetic neuropathyPeripheral neuropathy patientsSodium channel β subunitsSpectrum of patientsUse-dependent inhibitionCardiac conducting systemSodium channel α subunitVoltage-gated sodium channelsChannel α-subunitsSCN11A geneDiabetic neuropathyDiabetes mellitusChronic painNeuropathy patientsGanglion neuronsNegative genetic screeningChannel β subunitHealth sequelaeRepetitive stimulationRat NaV1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
Grubinska B, Chen L, Alsaloum M, Rampal N, Matson D, Yang C, Taborn K, Zhang M, Youngblood B, Liu D, Galbreath E, Allred S, Lepherd M, Ferrando R, Kornecook T, Lehto S, Waxman S, Moyer B, Dib-Hajj S, Gingras J. Rat NaV1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers. Molecular Pain 2019, 15: 1744806919881846. PMID: 31550995, PMCID: PMC6831982, DOI: 10.1177/1744806919881846.Peer-Reviewed Original ResearchConceptsOlfactory functionNav1.7 proteinPain behaviorPain responseRat modelSmall-diameter dorsal root ganglion neuronsNormal intraepidermal nerve fibre densityIntraepidermal nerve fiber densityIntra-epidermal nerve fibersDorsal root ganglion neuronsNeuropathic pain behaviorsNeuropathic pain responsesSpinal nerve ligationNerve fiber densityDorsal root gangliaAction potential firingPeripheral nervous systemEarly postnatal developmentGenetic animal modelsNav1.7 lossNerve ligationPain targetsNeuropathic conditionsGanglion neuronsRoot ganglia
2016
A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors
Alsaloum M, Kazi R, Gan Q, Amin J, Wollmuth LP. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors. Journal Of Neuroscience 2016, 36: 2617-2622. PMID: 26937003, PMCID: PMC4879209, DOI: 10.1523/jneurosci.2667-15.2016.Peer-Reviewed Original ResearchConceptsIon channelsIonotropic glutamate receptorsHydrophobic boxDiverse animal phylaExtensive sequence alignmentDiverse animal speciesGlutamate-gated ion channelsSingle amino acid differenceExchange mutationAmino acid differencesFast excitatory synaptic transmissionAvailable structural informationAnimal phylaTransmembrane helicesSequence alignmentGlutamate receptorsAcid differencesMolecular determinantsGluN2 subunitsAnimal speciesExtracellular interfaceMotifSynaptic functionReceptor functionNervous system