2016
Stimulation of Slack K+ Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex
Fleming MR, Brown MR, Kronengold J, Zhang Y, Jenkins DP, Barcia G, Nabbout R, Bausch AE, Ruth P, Lukowski R, Navaratnam DS, Kaczmarek LK. Stimulation of Slack K+ Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. Cell Reports 2016, 16: 2281-2288. PMID: 27545877, PMCID: PMC5123741, DOI: 10.1016/j.celrep.2016.07.024.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsBiosensing TechniquesBithionolBridged Bicyclo Compounds, HeterocyclicCell MembraneCerebral CortexFragile X Mental Retardation ProteinGene Expression RegulationHEK293 CellsHumansIon TransportMiceMice, KnockoutMicrofilament ProteinsMutationNerve Tissue ProteinsNeuronsPatch-Clamp TechniquesPhosphorylationPotassium ChannelsPotassium Channels, Sodium-ActivatedPrimary Cell CultureProtein BindingRNA, Small InterferingSignal TransductionThiazolidinesXenopus laevisConceptsProtein phosphatase 1Plasma membraneProtein kinase C.C-terminal residuesPhactr-1Potassium channelsPhosphatase 1Terminal domainSlack channelsHuman mutationsKinase C.Sodium-activated potassium channelsPharmacological activatorsOptical biosensor assayChannel stimulationSlack currentsBiosensor assaysMembraneMutantsPhosphorylationIntellectual disabilityProteinMutationsSevere intellectual disabilityActivator
2010
The Slack Sodium-Activated Potassium Channel Provides a Major Outward Current in Olfactory Neurons of Kv1.3−/− Super-Smeller Mice
Lu S, Das P, Fadool DA, Kaczmarek LK. The Slack Sodium-Activated Potassium Channel Provides a Major Outward Current in Olfactory Neurons of Kv1.3−/− Super-Smeller Mice. Journal Of Neurophysiology 2010, 103: 3311-3319. PMID: 20393063, PMCID: PMC2888249, DOI: 10.1152/jn.00607.2009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBiophysicsCardiovascular AgentsCells, CulturedElectric StimulationGene Expression RegulationIn Vitro TechniquesKv1.3 Potassium ChannelMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutNerve Tissue ProteinsNeuronsOlfactory BulbPatch-Clamp TechniquesPotassium ChannelsPotassium Channels, Sodium-ActivatedPyrimidinesRNA InterferenceSodium Channel BlockersTetrodotoxinTransfectionConceptsMitral cellsOlfactory bulbOutward currentsOlfactory neuronsWildtype animalsPotassium channelsMajor outward currentVoltage-clamp recordingsVoltage-dependent potassium channelsNet outward currentIntracellular sodiumOB slicesPotassium channel genesCompensatory increaseFiring patternsWestern blottingRNA interference approachPrimary culturesEnhanced expressionDetection of odorsSame treatmentChannel genesMiceNeuronsOlfactory phenotypes
2008
Amino‐termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation
Brown MR, Kronengold J, Gazula V, Spilianakis CG, Flavell RA, Von Hehn CA, Bhattacharjee A, Kaczmarek LK. Amino‐termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. The Journal Of Physiology 2008, 586: 5161-5179. PMID: 18787033, PMCID: PMC2652154, DOI: 10.1113/jphysiol.2008.160861.Peer-Reviewed Original ResearchAction PotentialsAdaptation, PhysiologicalAmino Acid SequenceAnimalsBrainCloning, MolecularGene Expression RegulationMiceMice, Inbred C57BLMolecular Sequence DataNerve Tissue ProteinsNeuronsPotassium ChannelsPotassium Channels, Sodium-ActivatedPromoter Regions, GeneticProtein IsoformsRatsRNA, Messenger
2005
Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons
Song P, Yang Y, Barnes-Davies M, Bhattacharjee A, Hamann M, Forsythe ID, Oliver DL, Kaczmarek LK. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nature Neuroscience 2005, 8: 1335-1342. PMID: 16136041, DOI: 10.1038/nn1533.Peer-Reviewed Original ResearchMeSH KeywordsAcoustic StimulationAction PotentialsAnimalsAnimals, NewbornBrain StemCHO CellsCricetinaeCricetulusDose-Response Relationship, RadiationElectric StimulationEnzyme InhibitorsFunctional LateralityGene Expression RegulationImmunohistochemistryIn Vitro TechniquesIndolesMaleimidesNeuronsPatch-Clamp TechniquesPhosphorylationProtein Kinase CRatsRats, Sprague-DawleyTetradecanoylphorbol AcetateConceptsKv3.1 potassium channelAction potentialsAuditory neuronsPotassium channelsShort-duration action potentialsRat brainstem neuronsAuditory brainstem nucleiProtein kinase CHigh-frequency spikingHigh-frequency auditoryBrainstem neuronsHigh-frequency stimuliBrainstem nucleiSynaptic stimulationNeuronsInteraural differencesSound localizationIntrinsic electrical propertiesKinase C
1999
Cell Type‐Specific Expression of the Kv3.1 Gene Is Mediated by a Negative Element in the 5′ Untranslated Region of the Kv3.1 Promoter
Gan L, Hahn S, Kaczmarek L. Cell Type‐Specific Expression of the Kv3.1 Gene Is Mediated by a Negative Element in the 5′ Untranslated Region of the Kv3.1 Promoter. Journal Of Neurochemistry 1999, 73: 1350-1362. PMID: 10501178, DOI: 10.1046/j.1471-4159.1999.0731350.x.Peer-Reviewed Original ResearchMeSH Keywords3T3 Cells5' Untranslated RegionsAnimalsBase SequenceBeta-GalactosidaseBrainCell LineCHO CellsCloning, MolecularCricetinaeGene Expression RegulationGliomaHumansMiceMice, TransgenicMolecular Sequence DataNeuropeptidesOrgan SpecificityPC12 CellsPotassium ChannelsPotassium Channels, Voltage-GatedPromoter Regions, GeneticRatsRecombinant Fusion ProteinsRegulatory Sequences, Nucleic AcidRNA, MessengerShaw Potassium ChannelsTranscription, GeneticTransfectionConceptsType-specific expressionUntranslated regionCell type-specific enhancersCell type-specific expressionCell linesTissue-specific expressionThymidine kinase promoterCell-type specificityTransient transfection assaysKv3.1 potassium channel genePotassium channel genesKv3.1 geneDifferent tissue originsRegulatory fragmentDeletion analysisRegulatory regionsTranscriptional mechanismsTransgenic miceTransfection assaysKinase promoterFunctional analysisChannel genesType specificityPromoterGenes
1998
When, where, and how much? Expression of the Kv3.1 potassium channel in high‐frequency firing neurons
Gan L, Kaczmarek L. When, where, and how much? Expression of the Kv3.1 potassium channel in high‐frequency firing neurons. Developmental Neurobiology 1998, 37: 69-79. PMID: 9777733, DOI: 10.1002/(sici)1097-4695(199810)37:1<69::aid-neu6>3.0.co;2-6.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAuditory brain stem neuronsVoltage-dependent potassium currentsBrain stem neuronsHigh-frequency firing neuronsKv3.1 potassium channelStem neuronsKv3.1 potassium channel geneLong-term regulationSynaptic inputsPotassium currentPotassium channel genesNeuronsPotassium channelsKv3.1 geneKv3.1 subunitsFiring neuronsHigh frequencyChannel genesCurrent knowledgeChannels altersTranscriptional mechanismsCell-type specificityExpressionGene transcriptionExtrinsic factors
1997
Properties and regulation of the minK potassium channel protein
Kaczmarek L, Blumenthal E. Properties and regulation of the minK potassium channel protein. Physiological Reviews 1997, 77: 627-641. PMID: 9234960, DOI: 10.1152/physrev.1997.77.3.627.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsMinK proteinSingle transmembrane segmentPotassium channel proteinChannel-forming subunitTransmembrane segmentsMink genesChannel proteinsSecond messengerAmino acidsKvLQT1 channelsXenopus oocytesProteinNative currentsEpithelial cellsMinK mRNAIon selectivityVoltage-dependent potassium currentsResultant channelPotassium currentStrong candidateCellsGenesSubunitsVestibular organsMessenger
1992
Structure and regulation of the MinK potassium channel
Blumenthal E, Kaczmarek L. Structure and regulation of the MinK potassium channel. Neurochemical Research 1992, 17: 869-876. PMID: 1407274, DOI: 10.1007/bf00993262.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAmino Acid SequenceAnimalsBiophysical PhenomenaBiophysicsGene Expression RegulationMembrane ProteinsMolecular Sequence DataPotassium ChannelsPotassium Channels, Voltage-Gated
1990
Estrogen induction of a small, putative K+ channel mRNA in rat uterus
Pragnell M, Snay K, Trimmer J, MacLusky N, Naftolin F, Kaczmarek L, Boyle M. Estrogen induction of a small, putative K+ channel mRNA in rat uterus. Neuron 1990, 4: 807-812. PMID: 2344412, DOI: 10.1016/0896-6273(90)90207-v.Peer-Reviewed Original ResearchConceptsMRNA speciesAmino acid proteinProkaryotic ion channelsDramatic long-term changesMolecular cloningAcid proteinIon channel expressionMammalian sourcesIon channelsXenopus oocytesVoltage-dependent channelsSpeciesStructural motifsCritical roleChannel expressionMRNAChannel mRNAEstrogen inductionLong-term changesInductionCloningProteinMotifRegulationOocytes