2015
Measurement of Domain-Specific HER2 (ERBB2) Expression May Classify Benefit From Trastuzumab in Breast Cancer
Carvajal-Hausdorf DE, Schalper KA, Pusztai L, Psyrri A, Kalogeras KT, Kotoula V, Fountzilas G, Rimm DL. Measurement of Domain-Specific HER2 (ERBB2) Expression May Classify Benefit From Trastuzumab in Breast Cancer. Journal Of The National Cancer Institute 2015, 107: djv136. PMID: 25991002, PMCID: PMC4554192, DOI: 10.1093/jnci/djv136.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntibodies, Monoclonal, HumanizedAntineoplastic AgentsAntineoplastic Combined Chemotherapy ProtocolsBiomarkers, TumorBreast NeoplasmsChemotherapy, AdjuvantClinical Trials as TopicDisease-Free SurvivalExtracellular SpaceFemaleFluorescent Antibody TechniqueGene Expression Regulation, NeoplasticHumansIntracellular SpaceKaplan-Meier EstimateMiddle AgedPredictive Value of TestsPrognosisReceptor, ErbB-2Sensitivity and SpecificityTissue Array AnalysisTrastuzumabTreatment OutcomeConceptsHuman epidermal growth factor receptor 2ECD expressionICD statusLonger DFSQuantitative immunofluorescenceTrastuzumab therapyPrognostic valueBreast cancerTissue microarrayEpidermal growth factor receptor 2Adjuvant trastuzumab therapyDisease-free survival analysisTrastuzumab-treated patientsGrowth factor receptor 2High positive predictive valueHER2-positive tumorsKaplan-Meier estimatesFactor receptor 2ERBB2 gene amplificationHER2 protein expressionPositive predictive valueExtracellular domainAdjuvant chemotherapyHER2-ICDBetter DFS
2013
A 3-gene proliferation score (TOP-FOX-67) can re-classify histological grade-2, ER-positive breast cancers into low- and high-risk prognostic categories
Szekely B, Iwamoto T, Szasz AM, Qi Y, Matsuoka J, Symmans WF, Tokes AM, Kulka J, Swanton C, Pusztai L. A 3-gene proliferation score (TOP-FOX-67) can re-classify histological grade-2, ER-positive breast cancers into low- and high-risk prognostic categories. Breast Cancer Research And Treatment 2013, 138: 691-698. PMID: 23504136, DOI: 10.1007/s10549-013-2475-4.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, NeoplasmBreast NeoplasmsCell ProliferationChemotherapy, AdjuvantCohort StudiesDatabases, GeneticDNA Topoisomerases, Type IIDNA-Binding ProteinsFemaleForkhead Box Protein M1Forkhead Transcription FactorsGene Expression Regulation, NeoplasticGenome, HumanHumansKi-67 AntigenPoly-ADP-Ribose Binding ProteinsPredictive Value of TestsPrognosisReceptors, EstrogenSurvival RateTamoxifenConceptsGenomic grade indexGrade 2 cancersPrognostic valueProliferation scoreBreast cancerDistant metastasis-free survival curvesGrade 2Metastasis-free survival curvesER-positive breast cancerSystemic adjuvant therapyHigh expressionCohort of patientsHistological grade 2Intermediate-risk cancerPositive breast cancerSimilar prognostic valueGrade 2 tumorsHigh-risk groupGrade 1 cancersHistological grade groupsNon-significant trendWorse DMFSAdjuvant tamoxifenAdjuvant therapyWorse survival
2012
Prognostic evaluation of the B cell/IL-8 metagene in different intrinsic breast cancer subtypes
Hanker LC, Rody A, Holtrich U, Pusztai L, Ruckhaeberle E, Liedtke C, Ahr A, Heinrich TM, Sänger N, Becker S, Karn T. Prognostic evaluation of the B cell/IL-8 metagene in different intrinsic breast cancer subtypes. Breast Cancer Research And Treatment 2012, 137: 407-416. PMID: 23242614, DOI: 10.1007/s10549-012-2356-2.Peer-Reviewed Original ResearchMeSH KeywordsB-LymphocytesBreast NeoplasmsDisease-Free SurvivalFemaleFollow-Up StudiesGene Expression Regulation, NeoplasticHumansInterleukin-8Middle AgedOligonucleotide Array Sequence AnalysisPredictive Value of TestsPrognosisProportional Hazards ModelsReceptor, ErbB-2Receptors, EstrogenReceptors, ProgesteroneConceptsTriple-negative breast cancerCell/ILNegative breast cancerBreast cancer subtypesPrognostic valueBreast cancerBetter prognosisB cellsCancer subtypesIntrinsic breast cancer subtypesPrimary breast cancer samplesER-negative subtypesEvent-free survivalB cell signaturesHigher B cellsSignificant prognostic valueTriple-negative samplesBreast cancer samplesRoutine clinicopathological variablesOnly significant predictorSubtype-specific analysesTNBC subtypesClinicopathological variablesOutcome predictorsPrognostic evaluationElevated serum P1NP predicts development of bone metastasis and survival in early-stage breast cancer
Dean-Colomb W, Hess KR, Young E, Gornet TG, Handy BC, Moulder SL, Ibrahim N, Pusztai L, Booser D, Valero V, Hortobagyi GN, Esteva FJ. Elevated serum P1NP predicts development of bone metastasis and survival in early-stage breast cancer. Breast Cancer Research And Treatment 2012, 137: 631-636. PMID: 23242617, PMCID: PMC3867793, DOI: 10.1007/s10549-012-2374-0.Peer-Reviewed Original ResearchConceptsBreast cancerBone metastasesStage IP1NP levelsSerum levelsIL-6Procollagen type I N-terminal propeptideType I N-terminal propeptideCox proportional hazards regression analysisProportional hazards regression analysisEarly-stage breast cancerPoor OS rateSerum P1NP levelsKaplan-Meier methodOverall survival rateHazards regression analysisLower overall survivalBone metastasis developmentBreast cancer metastasisBlood sample collectionN-terminal propeptideAdvanced diseaseOverall survivalOS ratesSerum P1NPAgreement in Risk Prediction Between the 21‐Gene Recurrence Score Assay (Oncotype DX®) and the PAM50 Breast Cancer Intrinsic Classifier™ in Early‐Stage Estrogen Receptor–Positive Breast Cancer
Kelly CM, Bernard PS, Krishnamurthy S, Wang B, Ebbert MT, Bastien RR, Boucher KM, Young E, Iwamoto T, Pusztai L. Agreement in Risk Prediction Between the 21‐Gene Recurrence Score Assay (Oncotype DX®) and the PAM50 Breast Cancer Intrinsic Classifier™ in Early‐Stage Estrogen Receptor–Positive Breast Cancer. The Oncologist 2012, 17: 492-498. PMID: 22418568, PMCID: PMC3336833, DOI: 10.1634/theoncologist.2012-0007.Peer-Reviewed Original ResearchConceptsBreast cancerEstrogen receptorEarly-stage estrogen receptor-positive breast cancerRisk assignmentHuman epidermal growth factor receptor 2 (HER2) expressionEpidermal growth factor receptor 2 expressionEstrogen receptor-positive breast cancerReceptor-positive breast cancerIntermediate RS groupLuminal B cancersReceptor 2 expressionLow-risk categoryQuantitative polymerase chain reactionB cancersMore patientsPolymerase chain reactionIntermediate RSLower riskStage IRS groupCancerPAM50Risk categoriesRisk predictionChain reaction
2011
Homogeneous Datasets of Triple Negative Breast Cancers Enable the Identification of Novel Prognostic and Predictive Signatures
Karn T, Pusztai L, Holtrich U, Iwamoto T, Shiang CY, Schmidt M, Müller V, Solbach C, Gaetje R, Hanker L, Ahr A, Liedtke C, Ruckhäberle E, Kaufmann M, Rody A. Homogeneous Datasets of Triple Negative Breast Cancers Enable the Identification of Novel Prognostic and Predictive Signatures. PLOS ONE 2011, 6: e28403. PMID: 22220191, PMCID: PMC3248403, DOI: 10.1371/journal.pone.0028403.Peer-Reviewed Original ResearchMeSH KeywordsBiomarkers, TumorBreast NeoplasmsCohort StudiesDatabases, GeneticFemaleGene Expression ProfilingGene Expression Regulation, NeoplasticGenes, NeoplasmHumansKaplan-Meier EstimateNeoadjuvant TherapyPredictive Value of TestsPrognosisReceptor, ErbB-2Receptors, EstrogenReceptors, ProgesteroneReproducibility of ResultsConceptsPrognostic signatureValidation cohortBreast cancerPredictive valueTriple-negative breast cancerEvent-free survivalTriple-negative cancersHigh-risk groupIndependent validation cohortNegative breast cancerModest predictive valuePrognostic gene signaturePrognostic gene setsTNBC cohortNeoadjuvant chemotherapyPrognostic predictorPoor prognosisRisk groupsMultivariate analysisPredictive signatureNovel prognosticGene signatureSmall sample sizeCohortCancerMaximum predictive power of the microarray-based models for clinical outcomes is limited by correlation between endpoint and gene expression profile
Zhao C, Shi L, Tong W, Shaughnessy JD, Oberthuer A, Pusztai L, Deng Y, Symmans WF, Shi T. Maximum predictive power of the microarray-based models for clinical outcomes is limited by correlation between endpoint and gene expression profile. BMC Genomics 2011, 12: s3. PMID: 22369035, PMCID: PMC3287499, DOI: 10.1186/1471-2164-12-s5-s3.Peer-Reviewed Original ResearchProposals for uniform collection of biospecimens from neoadjuvant breast cancer clinical trials: timing and specimen types
Loi S, Symmans WF, Bartlett J, Fumagalli D, Veer L, Forbes JF, Bedard P, Denkert C, Zujewski J, Viale G, Pusztai L, Esserman LJ, Leyland-Jones BR. Proposals for uniform collection of biospecimens from neoadjuvant breast cancer clinical trials: timing and specimen types. The Lancet Oncology 2011, 12: 1162-1168. PMID: 21684810, DOI: 10.1016/s1470-2045(11)70117-6.Peer-Reviewed Original ResearchConceptsNorth American Breast Cancer GroupBreast International GroupClinical trialsBiopsy procedureNeoadjuvant breast cancer trialsNeoadjuvant clinical trialsBreast cancer clinical trialsBreast cancer groupBreast cancer trialsStart of treatmentCancer clinical trialsNational Cancer InstituteNeoadjuvant trialsDefinitive surgeryNeoadjuvant treatmentCancer groupStudy protocolCancer trialsBreast cancerCancer InstituteUniform collectionTumor tissueBlood collectionTrialsSpecimen typesA Genomic Predictor of Response and Survival Following Taxane-Anthracycline Chemotherapy for Invasive Breast Cancer
Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, Vidaurre T, Holmes F, Souchon E, Wang H, Martin M, Cotrina J, Gomez H, Hubbard R, Chacón JI, Ferrer-Lozano J, Dyer R, Buxton M, Gong Y, Wu Y, Ibrahim N, Andreopoulou E, Ueno NT, Hunt K, Yang W, Nazario A, DeMichele A, O’Shaughnessy J, Hortobagyi GN, Symmans WF. A Genomic Predictor of Response and Survival Following Taxane-Anthracycline Chemotherapy for Invasive Breast Cancer. JAMA 2011, 305: 1873-1881. PMID: 21558518, PMCID: PMC5638042, DOI: 10.1001/jama.2011.593.Peer-Reviewed Original ResearchMeSH KeywordsAdultAlgorithmsAnthracyclinesAntineoplastic Agents, HormonalAntineoplastic Combined Chemotherapy ProtocolsBiopsy, NeedleBreast NeoplasmsBridged-Ring CompoundsDisease-Free SurvivalDrug Resistance, NeoplasmFemaleForecastingGene Expression ProfilingGenes, erbB-2Genes, NeoplasmGenomicsHumansMiddle AgedNeoadjuvant TherapyNeoplasm Recurrence, LocalOligonucleotide Array Sequence AnalysisPredictive Value of TestsPrognosisProspective StudiesReceptors, EstrogenRiskTaxoidsConceptsDistant relapse-free survivalInvasive breast cancerBreast cancerGenomic predictorsD. Anderson Cancer CenterAnthracycline-based regimensER-negative subsetExcellent pathologic responseProspective multicenter studyRelapse-free survivalAbsolute risk reductionStandard cancer treatmentPredictors of responseIndependent validation cohortAnderson Cancer CenterNegative breast cancerCancer treatment strategiesSequential taxaneNeoadjuvant chemotherapyPreoperative chemotherapyPathologic responseWorse survivalEndocrine sensitivityER statusMulticenter studyDistinct p53 Gene Signatures Are Needed to Predict Prognosis and Response to Chemotherapy in ER-Positive and ER-Negative Breast Cancers
Coutant C, Rouzier R, Qi Y, Lehmann-Che J, Bianchini G, Iwamoto T, Hortobagyi GN, Symmans WF, Uzan S, Andre F, de Thé H, Pusztai L. Distinct p53 Gene Signatures Are Needed to Predict Prognosis and Response to Chemotherapy in ER-Positive and ER-Negative Breast Cancers. Clinical Cancer Research 2011, 17: 2591-2601. PMID: 21248301, DOI: 10.1158/1078-0432.ccr-10-1045.Peer-Reviewed Original ResearchConceptsER- cancersPredictive valueBreast cancerP53 signatureWorse distant metastasis-free survivalDistant metastasis-free survivalER-negative breast cancerAdjuvant tamoxifen therapyDifferent molecular subsetsMetastasis-free survivalDifferent prognostic valueNegative breast cancerHigher chemotherapy sensitivityTamoxifen therapyFree survivalBetter prognosisER-positivePoor prognosisPrognostic valuePrognostic markerMolecular subsetsChemotherapy sensitivityMutation statusP53 mutationsMultivariate analysisMultifactorial Approach to Predicting Resistance to Anthracyclines
Desmedt C, Di Leo A, de Azambuja E, Larsimont D, Haibe-Kains B, Selleslags J, Delaloge S, Duhem C, Kains JP, Carly B, Maerevoet M, Vindevoghel A, Rouas G, Lallemand F, Durbecq V, Cardoso F, Salgado R, Rovere R, Bontempi G, Michiels S, Buyse M, Nogaret JM, Qi Y, Symmans F, Pusztai L, D'Hondt V, Piccart-Gebhart M, Sotiriou C. Multifactorial Approach to Predicting Resistance to Anthracyclines. Journal Of Clinical Oncology 2011, 29: 1578-1586. PMID: 21422418, DOI: 10.1200/jco.2010.31.2231.Peer-Reviewed Original ResearchMeSH KeywordsAntibiotics, AntineoplasticAntigens, NeoplasmBiomarkers, TumorBiopsyBreast NeoplasmsChemotherapy, AdjuvantDNA Topoisomerases, Type IIDNA-Binding ProteinsDrug Resistance, NeoplasmEpirubicinEuropeFemaleGene Expression ProfilingGene Expression Regulation, NeoplasticHumansMiddle AgedNeoadjuvant TherapyOdds RatioPatient SelectionPoly-ADP-Ribose Binding ProteinsPredictive Value of TestsProspective StudiesReceptor, ErbB-2Receptors, EstrogenReproducibility of ResultsRisk AssessmentRisk FactorsTexasTreatment FailureConceptsPathologic complete responseHuman epidermal growth factor receptor 2Neoadjuvant trialsTOP trialPredictive valueEstrogen receptor-negative tumorsEpidermal growth factor receptor 2High negative predictive valuePrimary end pointGrowth factor receptor 2Receptor-negative tumorsResponse/resistanceFactor receptor 2Negative predictive valueUseful clinical toolER-negative samplesA scoresAnthracycline monotherapyEvaluable patientsGene expression signaturesComplete responseBreast cancerImmune responseReceptor 2PatientsCoping with uncertainty: T1a,bN0M0 HER2-positive breast cancer, do we have a treatment threshold?
Kelly CM, Pritchard KI, Trudeau M, Andreopoulou E, Hess K, Pusztai L. Coping with uncertainty: T1a,bN0M0 HER2-positive breast cancer, do we have a treatment threshold? Annals Of Oncology 2011, 22: 2387-2393. PMID: 21406473, DOI: 10.1093/annonc/mdq786.Peer-Reviewed Original ResearchConceptsHER2-positive breast cancerBreast cancerHuman epidermal growth factor receptor 2Epidermal growth factor receptor 2Baseline risk estimatesBN0M0 breast cancerHER2-positive cohortNode-negative T1aStudy end pointDisease-free survivalRisks of therapyGrowth factor receptor 2Subset of patientsPositive breast cancerRetrospective database analysisHER2-negative cancersRecent retrospective studiesHER2-positive cancersFactor receptor 2Small cohort sizeAdjuvant therapyAdjuvant trastuzumabComorbid illnessesCardiac eventsAbsolute benefitA clinically relevant gene signature in triple negative and basal-like breast cancer
Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L, Gaetje R, Solbach C, Ahr A, Metzler D, Schmidt M, Müller V, Holtrich U, Kaufmann M. A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Research 2011, 13: r97. PMID: 21978456, PMCID: PMC3262210, DOI: 10.1186/bcr3035.Peer-Reviewed Original ResearchMeSH KeywordsAdultB-LymphocytesBreast NeoplasmsFemaleHumansInterleukin-8Middle AgedMultivariate AnalysisNeoplasms, Basal CellPredictive Value of TestsSurvival RateTranscriptomeConceptsTriple-negative breast cancerBasal-like triple-negative breast cancerBreast cancerPrognostic markerMolecular subtypesMultivariate analysisBasal-like molecular subtypeClaudin-low molecular subtypeBasal-like breast cancerAttractive novel therapeutic targetB cell presenceHigh expressionER-positive cancersHigh histological gradeHigher B cellsIL-8 pathwayIL-8 activityNegative breast cancerNew prognostic markerNovel therapeutic targetBiology-based therapiesNon-neoplastic cell populationsRelevant gene signaturesRoutine clinicopathological variablesResultsSeventy-three percent
2010
Gene Pathways Associated With Prognosis and Chemotherapy Sensitivity in Molecular Subtypes of Breast Cancer
Iwamoto T, Bianchini G, Booser D, Qi Y, Coutant C, Shiang CY, Santarpia L, Matsuoka J, Hortobagyi GN, Symmans WF, Holmes FA, O’Shaughnessy J, Hellerstedt B, Pippen J, Andre F, Simon R, Pusztai L. Gene Pathways Associated With Prognosis and Chemotherapy Sensitivity in Molecular Subtypes of Breast Cancer. Journal Of The National Cancer Institute 2010, 103: 264-272. PMID: 21191116, DOI: 10.1093/jnci/djq524.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Combined Chemotherapy ProtocolsBiomarkers, TumorBreast NeoplasmsChemotherapy, AdjuvantConfounding Factors, EpidemiologicCytochrome P-450 Enzyme InhibitorsCytochrome P-450 Enzyme SystemDatabases, GeneticDrug Resistance, NeoplasmFemaleGene Expression Regulation, NeoplasticGTP-Binding ProteinsHumansMiddle AgedNeoadjuvant TherapyNeoplasm StagingPredictive Value of TestsPrognosisReceptors, EstrogenSignal TransductionTreatment OutcomeConceptsER-negative breast cancerPathological complete responseER-positive cancersER-negative cancersBreast cancerChemotherapy responseComplete responseBetter prognosisChemotherapy sensitivityLymph node-negative breast cancerNode-negative breast cancerSystemic adjuvant therapyCell cycle-related gene setsBreast cancer subtypesIngenuity Pathway AnalysisAdjuvant therapyPreoperative chemotherapyPoor prognosisPooled analysisEstrogen receptorTreatment responseMolecular subtypesAdditional cohortPrognosisStage IEvaluation of a 30-Gene Paclitaxel, Fluorouracil, Doxorubicin, and Cyclophosphamide Chemotherapy Response Predictor in a Multicenter Randomized Trial in Breast Cancer
Tabchy A, Valero V, Vidaurre T, Lluch A, Gomez H, Martin M, Qi Y, Barajas-Figueroa LJ, Souchon E, Coutant C, Doimi FD, Ibrahim NK, Gong Y, Hortobagyi GN, Hess KR, Symmans WF, Pusztai L. Evaluation of a 30-Gene Paclitaxel, Fluorouracil, Doxorubicin, and Cyclophosphamide Chemotherapy Response Predictor in a Multicenter Randomized Trial in Breast Cancer. Clinical Cancer Research 2010, 16: 5351-5361. PMID: 20829329, PMCID: PMC4181852, DOI: 10.1158/1078-0432.ccr-10-1265.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Combined Chemotherapy ProtocolsBiomarkers, PharmacologicalBiomarkers, TumorBreast NeoplasmsCarcinoma, Ductal, BreastCyclophosphamideDoxorubicinFemaleFluorouracilGene Expression Regulation, NeoplasticHumansMiddle AgedPaclitaxelPredictive Value of TestsPrognosisTreatment OutcomeConceptsPositive predictive valuePathologic complete responseFAC armPCR rateBreast cancerPredictive valueGene expression profilingDifferent molecular subsetsFine-needle aspiration biopsyMulticenter Randomized TrialInternational clinical trialsGenomic predictorsNegative predictive valueTreatment response predictionWeekly paclitaxelNeoadjuvant chemotherapyCyclophosphamide chemotherapyFAC chemotherapyPreoperative chemotherapyComplete responseRandomized trialsTreatment armsPredictive markerClinical trialsMolecular subsetsThe MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
Shi L, Campbell G, Jones W, Campagne F, Wen Z, Walker S, Su Z, Chu T, Goodsaid F, Pusztai L, Shaughnessy J, Oberthuer A, Thomas R, Paules R, Fielden M, Barlogie B, Chen W, Du P, Fischer M, Furlanello C, Gallas B, Ge X, Megherbi D, Symmans W, Wang M, Zhang J, Bitter H, Brors B, Bushel P, Bylesjo M, Chen M, Cheng J, Cheng J, Chou J, Davison T, Delorenzi M, Deng Y, Devanarayan V, Dix D, Dopazo J, Dorff K, Elloumi F, Fan J, Fan S, Fan X, Fang H, Gonzaludo N, Hess K, Hong H, Huan J, Irizarry R, Judson R, Juraeva D, Lababidi S, Lambert C, Li L, Li Y, Li Z, Lin S, Liu G, Lobenhofer E, Luo J, Luo W, McCall M, Nikolsky Y, Pennello G, Perkins R, Philip R, Popovici V, Price N, Qian F, Scherer A, Shi T, Shi W, Sung J, Thierry-Mieg D, Thierry-Mieg J, Thodima V, Trygg J, Vishnuvajjala L, Wang S, Wu J, Wu Y, Xie Q, Yousef W, Zhang L, Zhang X, Zhong S, Zhou Y, Zhu S, Arasappan D, Bao W, Lucas A, Berthold F, Brennan R, Buness A, Catalano J, Chang C, Chen R, Cheng Y, Cui J, Czika W, Demichelis F, Deng X, Dosymbekov D, Eils R, Feng Y, Fostel J, Fulmer-Smentek S, Fuscoe J, Gatto L, Ge W, Goldstein D, Guo L, Halbert D, Han J, Harris S, Hatzis C, Herman D, Huang J, Jensen R, Jiang R, Johnson C, Jurman G, Kahlert Y, Khuder S, Kohl M, Li J, Li L, Li M, Li Q, Li S, Li Z, Liu J, Liu Y, Liu Z, Meng L, Madera M, Martinez-Murillo F, Medina I, Meehan J, Miclaus K, Moffitt R, Montaner D, Mukherjee P, Mulligan G, Neville P, Nikolskaya T, Ning B, Page G, Parker J, Parry R, Peng X, Peterson R, Phan J, Quanz B, Ren Y, Riccadonna S, Roter A, Samuelson F, Schumacher M, Shambaugh J, Shi Q, Shippy R, Si S, Smalter A, Sotiriou C, Soukup M, Staedtler F, Steiner G, Stokes T, Sun Q, Tan P, Tang R, Tezak Z, Thorn B, Tsyganova M, Turpaz Y, Vega S, Visintainer R, von Frese J, Wang C, Wang E, Wang J, Wang W, Westermann F, Willey J, Woods M, Wu S, Xiao N, Xu J, Xu L, Yang L, Zeng X, Zhang J, Zhang L, Zhang M, Zhao C, Puri R, Scherf U, Tong W, Wolfinger R. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology 2010, 28: 827-838. PMID: 20676074, PMCID: PMC3315840, DOI: 10.1038/nbt.1665.Peer-Reviewed Original ResearchNomogram to Predict Subsequent Brain Metastasis in Patients With Metastatic Breast Cancer
Graesslin O, Abdulkarim BS, Coutant C, Huguet F, Gabos Z, Hsu L, Marpeau O, Uzan S, Pusztai L, Strom EA, Hortobagyi GN, Rouzier R, Ibrahim NK. Nomogram to Predict Subsequent Brain Metastasis in Patients With Metastatic Breast Cancer. Journal Of Clinical Oncology 2010, 28: 2032-2037. PMID: 20308667, DOI: 10.1200/jco.2009.24.6314.Peer-Reviewed Original ResearchConceptsSubsequent brain metastasesBrain metastasesMetastatic breast cancerBreast cancerPatient populationMethods Electronic medical recordsStage IV breast cancerHuman epidermal growth factor receptor 2Shorter disease-free survivalEpidermal growth factor receptor 2Multivariate logistic regression analysisDisease-free survivalGrowth factor receptor 2Logistic regression analysisDesign of trialsFactor receptor 2Cross Cancer InstituteElectronic medical recordsInstitutional review boardMetastatic diseaseMetastatic sitesPrevention trialsPrognostic featuresClinical nomogramMedical recordsAssessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials
Juul N, Szallasi Z, Eklund AC, Li Q, Burrell RA, Gerlinger M, Valero V, Andreopoulou E, Esteva FJ, Symmans WF, Desmedt C, Haibe-Kains B, Sotiriou C, Pusztai L, Swanton C. Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. The Lancet Oncology 2010, 11: 358-365. PMID: 20189874, DOI: 10.1016/s1470-2045(10)70018-8.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Combined Chemotherapy ProtocolsArea Under CurveBreast NeoplasmsCeramidesDrug Screening Assays, AntitumorFemaleHumansLogistic ModelsMetagenomicsMiddle AgedMitosisModels, GeneticMultivariate AnalysisNeoadjuvant TherapyPaclitaxelPredictive Value of TestsRetrospective StudiesRNA InterferenceConceptsTriple-negative breast cancerPathological complete responseMultivariate logistic regressionBreast cancerClinical trialsPrimary triple-negative breast cancerEpidermal growth factor receptor 2Logistic regressionBreast Cancer Research FoundationAddition of taxanesPaclitaxel-containing chemotherapyClinical trial cohortProportion of patientsCohort of patientsGrowth factor receptor 2Paclitaxel combination chemotherapyUK Medical Research CouncilAlternative treatment regimensPredictors of responseCancer Research UKBreast cancer cell linesTriple-negative breast cancer cell linesFactor receptor 2Cancer Research FoundationCell lines
2009
Evaluation of Microtubule-Associated Protein-Tau Expression As a Prognostic and Predictive Marker in the NSABP-B 28 Randomized Clinical Trial
Pusztai L, Jeong JH, Gong Y, Ross JS, Kim C, Paik S, Rouzier R, Andre F, Hortobagyi GN, Wolmark N, Symmans WF. Evaluation of Microtubule-Associated Protein-Tau Expression As a Prognostic and Predictive Marker in the NSABP-B 28 Randomized Clinical Trial. Journal Of Clinical Oncology 2009, 27: 4287-4292. PMID: 19667268, PMCID: PMC2744271, DOI: 10.1200/jco.2008.21.6887.Peer-Reviewed Original ResearchMeSH KeywordsAnthracyclinesAntineoplastic Combined Chemotherapy ProtocolsBiomarkers, TumorBreast NeoplasmsChemotherapy, AdjuvantCyclophosphamideDoxorubicinEstrogen Receptor alphaFemaleFollow-Up StudiesHumansImmunohistochemistryKaplan-Meier EstimateMaleMicrotubule-Associated ProteinsMiddle AgedMultivariate AnalysisPaclitaxelPredictive Value of TestsPrognosisProportional Hazards ModelsRandomized Controlled Trials as TopicReceptor, ErbB-2Tau ProteinsConceptsDisease-free survivalOverall survivalTau protein expressionTau expressionEndocrine therapyPaclitaxel chemotherapyClinical trialsHuman epidermal growth factor receptor 2 (HER2) expressionEpidermal growth factor receptor 2 expressionBetter disease-free survivalWorse disease-free survivalD. Anderson Cancer CenterPrimary breast cancer specimensCourses of doxorubicinHER2-positive statusHormone receptor positiveNational Surgical BreastAdjuvant endocrine therapyPercent of patientsProtein expressionGreater tumor sizeER-positive statusEstrogen receptor-positive statusLow histologic gradeAnderson Cancer CenterClinical evaluation of chemotherapy response predictors developed from breast cancer cell lines
Liedtke C, Wang J, Tordai A, Symmans WF, Hortobagyi GN, Kiesel L, Hess K, Baggerly KA, Coombes KR, Pusztai L. Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Research And Treatment 2009, 121: 301-309. PMID: 19603265, DOI: 10.1007/s10549-009-0445-7.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic Combined Chemotherapy ProtocolsBiomarkers, TumorBreast NeoplasmsCell Line, TumorCyclophosphamideDoxorubicinDrug Resistance, NeoplasmFemaleFluorouracilGene Expression ProfilingHumansNeoplasm StagingOligonucleotide Array Sequence AnalysisPaclitaxelPredictive Value of TestsTreatment OutcomeConceptsBreast cancer cell linesCancer cell linesResponse predictorsBaseline gene expression dataCell linesChemotherapy drugsHuman breast cancer cell linesStandard chemotherapy drugsFine-needle aspiration specimensNeedle aspiration specimensPathologic responseAffymetrix U133A gene chipsClinical evaluationBreast cancerPharmacogenomic predictorsSame drugStage IPredictive valueAspiration specimensMultigene predictorsTumor samplesPatientsResistant cellsPatient dataDrugs