2024
Hormone Receptor Positive HER2-negative/MammaPrint High-2 Breast Cancers Closely Resemble Triple Negative Breast Cancers.
Rios-Hoyo A, Xiong K, Dai J, Yau C, Marczyk M, Garcia-Milian R, Wolf D, Huppert L, Nanda R, Hirst G, Cobain E, van 't Veer L, Esserman L, Pusztai L. Hormone Receptor Positive HER2-negative/MammaPrint High-2 Breast Cancers Closely Resemble Triple Negative Breast Cancers. Clinical Cancer Research 2024 PMID: 39561272, DOI: 10.1158/1078-0432.ccr-24-1553.Peer-Reviewed Original ResearchPathological complete responseEvent-free survivalBreast cancerHER2 negative breast cancerHormone receptor-positive/HER2-negativePathologic complete response ratePrognostic risk categoriesTN breast cancerNegative breast cancerGene set analysisExpression of cell cycleGene expression dataLow-risk subgroupsHigh-risk groupMammaPrint assayNeoadjuvant trialsComplete responseER statusResidual cancerPrognostic groupsClinical featuresI-SPY2Prognostic assaysExpression dataTreatment strategiesCorrelation of hormone receptor positive HER2-negative/MammaPrint high-2 breast cancer with triple negative breast cancer: Results from gene expression data from the ISPY2 trial.
Rios-Hoyo A, Xiong K, Marczyk M, García-Millán R, Wolf D, Huppert L, Nanda R, Yau C, Hirst G, van 't Veer L, Esserman L, Pusztai L. Correlation of hormone receptor positive HER2-negative/MammaPrint high-2 breast cancer with triple negative breast cancer: Results from gene expression data from the ISPY2 trial. Journal Of Clinical Oncology 2024, 42: 573-573. DOI: 10.1200/jco.2024.42.16_suppl.573.Peer-Reviewed Original ResearchGene expression dataGene expression analysisExpression dataExpressed genesExpression analysisTriple-negativeDistance analysisPathway analysisDifferential gene expression analysisCell cycle pathwayGene set enrichment analysisBreast cancerIngenuity Pathway AnalysisRate of pathological complete responseHigh-risk stage IIGlucocorticoid receptor signalingTriple negative breast cancerCycle pathwayPathological complete responseDNA repairEnrichment analysisOptimal treatment strategyNegative breast cancerI-SPY2 trialGenes
2015
Immune modulation of pathologic complete response after neoadjuvant HER2-directed therapies in the NeoSphere trial
Bianchini G, Pusztai L, Pienkowski T, Im YH, Bianchi GV, Tseng LM, Liu MC, Lluch A, Galeota E, Magazzù D, de la Haba-Rodríguez J, Oh DY, Poirier B, Pedrini JL, Semiglazov V, Valagussa P, Gianni L. Immune modulation of pathologic complete response after neoadjuvant HER2-directed therapies in the NeoSphere trial. Annals Of Oncology 2015, 26: 2429-2436. PMID: 26387142, DOI: 10.1093/annonc/mdv395.Peer-Reviewed Original Research
2013
Bayesian Mixture Models for Assessment of Gene Differential Behaviour and Prediction of pCR through the Integration of Copy Number and Gene Expression Data
Trentini F, Ji Y, Iwamoto T, Qi Y, Pusztai L, Müller P. Bayesian Mixture Models for Assessment of Gene Differential Behaviour and Prediction of pCR through the Integration of Copy Number and Gene Expression Data. PLOS ONE 2013, 8: e68071. PMID: 23874497, PMCID: PMC3709899, DOI: 10.1371/journal.pone.0068071.Peer-Reviewed Original Research
2006
The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements
Shi L, Shi L, Reid L, Jones W, Shippy R, Warrington J, Baker S, Collins P, de Longueville F, Kawasaki E, Lee K, Luo Y, Sun Y, Willey J, Setterquist R, Fischer G, Tong W, Dragan Y, Dix D, Frueh F, Goodsaid F, Herman D, Jensen R, Johnson C, Lobenhofer E, Puri R, Scherf U, Thierry-Mieg J, Wang C, Wilson M, Wolber P, Zhang L, Amur S, Bao W, Barbacioru C, Lucas A, Bertholet V, Boysen C, Bromley B, Brown D, Brunner A, Canales R, Cao X, Cebula T, Chen J, Cheng J, Chu T, Chudin E, Corson J, Corton J, Croner L, Davies C, Davison T, Delenstarr G, Deng X, Dorris D, Eklund A, Fan X, Fang H, Fulmer-Smentek S, Fuscoe J, Gallagher K, Ge W, Guo L, Guo X, Hager J, Haje P, Han J, Han T, Harbottle H, Harris S, Hatchwell E, Hauser C, Hester S, Hong H, Hurban P, Jackson S, Ji H, Knight C, Kuo W, LeClerc J, Levy S, Li Q, Liu C, Liu Y, Lombardi M, Ma Y, Magnuson S, Maqsodi B, McDaniel T, Mei N, Myklebost O, Ning B, Novoradovskaya N, Orr M, Osborn T, Papallo A, Patterson T, Perkins R, Peters E, Peterson R, Philips K, Pine P, Pusztai L, Qian F, Ren H, Rosen M, Rosenzweig B, Samaha R, Schena M, Schroth G, Shchegrova S, Smith D, Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z, Thierry-Mieg D, Thompson K, Tikhonova I, Turpaz Y, Vallanat B, Van C, Walker S, Wang S, Wang Y, Wolfinger R, Wong A, Wu J, Xiao C, Xie Q, Xu J, Yang W, Zhang L, Zhong S, Zong Y, Slikker W. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology 2006, 24: 1151-1161. PMID: 16964229, PMCID: PMC3272078, DOI: 10.1038/nbt1239.Peer-Reviewed Original ResearchConceptsMicroArray Quality ControlIntroduction of microarray technologyMicroArray Quality Control projectRNA samplesGene expression measurementsGene expression researchMicroarray-basedMicroarray platformExpression dataMicroarray technologyExpression measurementsMicroarrayExpression researchIntraplatformMapping effortsGenesRNAAlternative technology platformsQuality controlData analysis issuesSitesPublication of studiesMultiple test sitesExpression