2018
Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes
Grochowski CM, Gu S, Yuan B, Julia T, Brennand KJ, Sebat J, Malhotra D, McCarthy S, Rudolph U, Lindstrand A, Chong Z, Levy DL, Lupski JR, Carvalho CMB. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Human Mutation 2018, 39: 939-946. PMID: 29696747, PMCID: PMC5995661, DOI: 10.1002/humu.23537.Peer-Reviewed Original ResearchConceptsWhole-genome sequencingSmall supernumerary marker chromosomeChromosomal fragmentsMarker chromosomesGenomic structureComparative genomic hybridization analysisSupernumerary marker chromosomeGenomic hybridization analysisTemporal originHybridization analysisArray comparative genomic hybridization analysisChromosome 9Short armRepair mechanismsMarker genotypesChromosomesPrecise architectureProband's maternal grandmotherStructural variationsPsychiatric phenotypesFurther complexityFragmentsDuplicationSequencingPhenotype
2017
Divergent Levels of Marker Chromosomes in an hiPSC-Based Model of Psychosis
Julia T, Carvalho C, Yuan B, Gu S, Altheimer A, McCarthy S, Malhotra D, Sebat J, Siegel A, Rudolph U, Lupski J, Levy D, Brennand K. Divergent Levels of Marker Chromosomes in an hiPSC-Based Model of Psychosis. Stem Cell Reports 2017, 8: 519-528. PMID: 28216146, PMCID: PMC5355568, DOI: 10.1016/j.stemcr.2017.01.010.Peer-Reviewed Original Research
2016
Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease
Wang M, Roussos P, McKenzie A, Zhou X, Kajiwara Y, Brennand K, De Luca G, Crary J, Casaccia P, Buxbaum J, Ehrlich M, Gandy S, Goate A, Katsel P, Schadt E, Haroutunian V, Zhang B. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease. Genome Medicine 2016, 8: 104. PMID: 27799057, PMCID: PMC5088659, DOI: 10.1186/s13073-016-0355-3.Peer-Reviewed Original ResearchConceptsGene expression changesCell type-specific marker genesExpression changesSingle-cell RNA-sequencing dataCo-expressed gene modulesLarge-scale gene expressionTranscriptomic network analysisCo-expression networkRNA-sequencing dataIntegrative network analysisNervous system developmentSelective regional vulnerabilityCritical molecular pathwaysActin cytoskeletonGenomic studiesGene modulesGenomic analysisGene expression abnormalitiesMarker genesMolecular basisGene expressionNetwork analysisMolecular mechanismsAxon guidanceMolecular pathways
2007
All β Cells Contribute Equally to Islet Growth and Maintenance
Brennand K, Huangfu D, Melton D. All β Cells Contribute Equally to Islet Growth and Maintenance. PLOS Biology 2007, 5: e163. PMID: 17535113, PMCID: PMC1877817, DOI: 10.1371/journal.pbio.0050163.Peer-Reviewed Original ResearchMeSH KeywordsAdult Stem CellsAnimalsCell DifferentiationCell ProliferationFemaleGenes, ReporterGenetic MarkersGreen Fluorescent ProteinsHistonesIn Vitro TechniquesInsulin-Secreting CellsIslets of LangerhansMaleMiceMice, Inbred C57BLMice, TransgenicModels, BiologicalMosaicismRecombinant Fusion ProteinsTetracyclineConceptsBeta-cell populationBeta cellsBeta-cell replicationHealthy adult miceBeta-cell poolCell populationsDifferentiated beta cellsStem cellsReplacement therapyCell replacement therapyAdult miceIslet growthΒ-cellsProtein expressionCell poolReplicative capacityCell replicationHepatocyte populationAdult stem cellsClonal analysisCellsLevel of fluorescenceFluorescent protein expressionPopulationDiabetes