2021
Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment
Westerhoff P, Alvarez PJJ, Kim J, Li Q, Alabastri A, Halas NJ, Villagran D, Zimmerman J, Wong MS. Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment. Current Opinion In Chemical Engineering 2021, 33: 100709. PMID: 34804780, PMCID: PMC8597955, DOI: 10.1016/j.coche.2021.100709.Peer-Reviewed Original ResearchUnique nanoscale propertiesWater treatmentBroad electromagnetic spectrumSolar-based technologiesNanomaterial designElectromagnetic spectrumNanoscale propertiesWater treatment technologiesNanomaterialsCentury-old technologyExternal energy sourceTreatment technologiesMaterial propertiesAquatic organismsDecentralized communityTremendous improvementGreat attentionEnergy sourcesTechnologyIndustrial processesWater processesSpectraPropertiesClean waterSynthesis
2016
A Strategy for Material Supply Chain Sustainability: Enabling a Circular Economy in the Electronics Industry through Green Engineering
O’Connor M, Zimmerman J, Anastas P, Plata D. A Strategy for Material Supply Chain Sustainability: Enabling a Circular Economy in the Electronics Industry through Green Engineering. ACS Sustainable Chemistry & Engineering 2016, 4: 5879-5888. DOI: 10.1021/acssuschemeng.6b01954.Peer-Reviewed Original ResearchGreen engineeringFabrication efficiencyElectronic technologyComplex waste streamsE-waste recoveryDesign devicesElectronics industryRecycled materialsSpecialty elementsManufacturing processE-waste componentsWaste streamsCircular economyMaterial supply chainSame materialTechnologyEngineeringRapid innovationElectronicsMaterialsDevicesTechnical researchRare earthIndustry oneEfficiencyOvercoming implementation barriers for nanotechnology in drinking water treatment
Westerhoff P, Alvarez P, Li Q, Gardea-Torresdey J, Zimmerman J. Overcoming implementation barriers for nanotechnology in drinking water treatment. Environmental Science Nano 2016, 3: 1241-1253. DOI: 10.1039/c6en00183a.Peer-Reviewed Original ResearchWater treatmentHydraulic contact timeEnergy-intensive processUnique material propertiesFull-scale commercializationMaterial propertiesTreatment systemChemical additionContact timeIntensive processPromising approachWaterLarge facilitiesSafe drinking waterNascent technologyNanotechnologyEfficiencyTechnologyCommercializationSignificant opportunities
2015
Application of membrane dewatering for algal biofuel
Mo W, Soh L, Werber J, Elimelech M, Zimmerman J. Application of membrane dewatering for algal biofuel. Algal Research 2015, 11: 1-12. DOI: 10.1016/j.algal.2015.05.018.Peer-Reviewed Original ResearchDifferent membrane configurationsMembrane filtration technologyApplication of membranesLife cycle assessment studiesLife cycle impactsForward osmosisFiltration technologyTerms of energyMembrane configurationMembrane filtrationCycle impactsMicroalgae biofuelsAlgal biofuelsProcess bottlenecksSystem performancePreferable configurationMembrane systemBiofuelsTechnologyOsmosisConfigurationPerformanceEnvironmental implications
2013
Microalgae‐Derived Chemicals: Opportunity for an Integrated Chemical Plant
Kermanshahi‐Pour A, Zimmerman J, Anastas P. Microalgae‐Derived Chemicals: Opportunity for an Integrated Chemical Plant. 2013, 387-433. DOI: 10.1002/9781118659892.ch15.Peer-Reviewed Original ResearchValuable chemicalsAlgal biotechnologyDownstream technologiesBiotechnological processesEfficient separationFine chemicalsMicroalgal speciesPlant approachCulture strategyExamples of chemicalsSimultaneous productionProcess integrationProtein fractionsCommercial scaleMicroalgaeCultivation systemsChemicalsBiotechnologyBioprocessesMultiple chemicalsSpeciesPlantsTechnologyProductionProduction systems