2020
Representation of EHR data for predictive modeling: a comparison between UMLS and other terminologies
Rasmy L, Tiryaki F, Zhou Y, Xiang Y, Tao C, Xu H, Zhi D. Representation of EHR data for predictive modeling: a comparison between UMLS and other terminologies. Journal Of The American Medical Informatics Association 2020, 27: 1593-1599. PMID: 32930711, PMCID: PMC7647355, DOI: 10.1093/jamia/ocaa180.Peer-Reviewed Original ResearchConceptsUnified Medical Language SystemRecurrent neural networkNeural networkPrediction performanceLogistic regressionPredictive modelingDeep learningData aggregationElectronic health record dataMachine learningRisk predictionBetter prediction performanceDengue hemorrhagic feverHealth record dataEHR dataCancer predictionLarge vocabularyDifferent tasksPredictive modelHeart failureDiabetes patientsPancreatic cancerClinical dataHemorrhagic feverICD-9
2014
Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality
Xu H, Aldrich M, Chen Q, Liu H, Peterson N, Dai Q, Levy M, Shah A, Han X, Ruan X, Jiang M, Li Y, St Julien J, Warner J, Friedman C, Roden D, Denny J. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. Journal Of The American Medical Informatics Association 2014, 22: 179-191. PMID: 25053577, PMCID: PMC4433365, DOI: 10.1136/amiajnl-2014-002649.Peer-Reviewed Original ResearchConceptsType 2 diabetes patientsElectronic health recordsCancer patientsCancer mortalityDiabetes patientsEHR dataNon-diabetic cancer patientsCox proportional hazards modelDrug exposure informationOral hypoglycemic medicationsCharlson Comorbidity IndexNon-diabetic patientsUse of metforminCancer diagnosisHealth recordsSite-specific cancersBody mass indexProportional hazards modelVanderbilt University Medical CenterUniversity Medical CenterLarge electronic health recordHypoglycemic medicationsCause mortalityComorbidity indexInsulin use