2023
APOBEC-1 deletion enhances cisplatin-induced acute kidney injury
Guo X, Blanc V, Davidson N, Velazquez H, Chen T, Moledina D, Moeckel G, Safirstein R, Desir G. APOBEC-1 deletion enhances cisplatin-induced acute kidney injury. Scientific Reports 2023, 13: 22255. PMID: 38097707, PMCID: PMC10721635, DOI: 10.1038/s41598-023-49575-3.Peer-Reviewed Original Research
2020
Kidney tissue hypoxia dictates T cell–mediated injury in murine lupus nephritis
Chen PM, Wilson PC, Shyer JA, Veselits M, Steach HR, Cui C, Moeckel G, Clark MR, Craft J. Kidney tissue hypoxia dictates T cell–mediated injury in murine lupus nephritis. Science Translational Medicine 2020, 12 PMID: 32269165, PMCID: PMC8055156, DOI: 10.1126/scitranslmed.aay1620.Peer-Reviewed Original ResearchConceptsHypoxia-inducible factor-1Lupus nephritisT cellsTissue hypoxiaT-cell-mediated injuryCell-mediated injuryHIF-1 blockadeKidney tissue hypoxiaSystemic lupus erythematosusHuman lupus nephritisMurine lupus nephritisRenal injuryAutoimmune injuryLupus erythematosusAutoimmune diseasesImmune cellsRenal tissueMurine modelTissue damageMore hypoxicNephritisInjuryLow oxygen tensionOxygen tensionFactor 1Polycystin 2 is increased in disease to protect against stress-induced cell death
Brill AL, Fischer TT, Walters JM, Marlier A, Sewanan LR, Wilson PC, Johnson EK, Moeckel G, Cantley LG, Campbell SG, Nerbonne JM, Chung HJ, Robert ME, Ehrlich BE. Polycystin 2 is increased in disease to protect against stress-induced cell death. Scientific Reports 2020, 10: 386. PMID: 31941974, PMCID: PMC6962458, DOI: 10.1038/s41598-019-57286-x.Peer-Reviewed Original ResearchConceptsPolycystin-2General cellular homeostasisCell deathStress-induced cell deathPathological cell deathAutosomal dominant polycystic kidney diseaseEndoplasmic reticulum membraneCellular homeostasisCellular stressPrimary ciliaUbiquitous expressionExpression changesCell stressReticulum membraneTransient receptor potential cation channelHuman diseasesMultiple tissuesEndogenous roleDominant polycystic kidney diseaseTissue typesCation channelsPolycystic kidney diseaseDifferent pathological statesMultiple diseasesKidney disease
2019
PD-1H (VISTA)–mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus
Han X, Vesely MD, Yang W, Sanmamed MF, Badri T, Alawa J, López-Giráldez F, Gaule P, Lee SW, Zhang JP, Nie X, Nassar A, Boto A, Flies DB, Zheng L, Kim TK, Moeckel GW, McNiff JM, Chen L. PD-1H (VISTA)–mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Science Translational Medicine 2019, 11 PMID: 31826980, DOI: 10.1126/scitranslmed.aax1159.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArthritisAutoantibodiesAutoimmunityDendritic CellsHumansInflammationInterferon Type ILupus Erythematosus, CutaneousLupus Erythematosus, SystemicMembrane ProteinsMice, Inbred BALB CMice, Inbred MRL lprMyeloid CellsNeutrophilsReceptors, Antigen, T-CellSignal TransductionTerpenesUp-RegulationConceptsPlasmacytoid dendritic cellsDiscoid lupus erythematosusSystemic lupus erythematosusCutaneous lupus lesionsPD-1HLupus erythematosusLupus lesionsAutoimmune diseasesKO miceT cellsMyeloid cellsHuman systemic lupus erythematosusBALB/c backgroundCutaneous lupus erythematosusInappropriate immune responseProgression of lupusSystemic autoimmune diseaseImmune cell expansionSuppression of autoimmunityAgonistic monoclonal antibodyDeath-1 homologCutaneous lupusProinflammatory neutrophilsDendritic cellsDLE lesionsRegulated necrosis and failed repair in cisplatin-induced chronic kidney disease
Landau SI, Guo X, Velazquez H, Torres R, Olson E, Garcia-Milian R, Moeckel GW, Desir GV, Safirstein R. Regulated necrosis and failed repair in cisplatin-induced chronic kidney disease. Kidney International 2019, 95: 797-814. PMID: 30904067, PMCID: PMC6543531, DOI: 10.1016/j.kint.2018.11.042.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseKidney diseaseKidney injuryCisplatin-induced chronic kidney diseaseCisplatin-induced acute kidney injuryToll-like receptor 2Regulated necrosis pathwaysReversible kidney injuryAcute kidney injuryChronic kidney injuryProximal tubular damageKidney injury markersDoses of cisplatinEvidence of fibrosisMechanisms of progressionEffective chemotherapeutic agentWestern blot analysisFirst doseInjury markersIntraperitoneal cisplatinSignificant nephrotoxicityTubular damageKidney functionSecond doseCisplatin administration
2018
The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery
Stoppe C, Averdunk L, Goetzenich A, Soppert J, Marlier A, Kraemer S, Vieten J, Coburn M, Kowark A, Kim BS, Marx G, Rex S, Ochi A, Leng L, Moeckel G, Linkermann A, El Bounkari O, Zarbock A, Bernhagen J, Djudjaj S, Bucala R, Boor P. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Science Translational Medicine 2018, 10 PMID: 29769287, DOI: 10.1126/scitranslmed.aan4886.Peer-Reviewed Original ResearchMeSH KeywordsAcute Kidney InjuryAnimalsAntigens, Differentiation, B-LymphocyteAntioxidantsCardiac Surgical ProceduresCell DeathHistocompatibility Antigens Class IIHumansIncidenceInflammationKidneyLipid PeroxidationLipocalin-2Macrophage Migration-Inhibitory FactorsMice, Inbred C57BLOxidative StressProtective AgentsProtein DomainsRecombinant ProteinsReperfusion InjuryRhabdomyolysisConceptsMacrophage migration inhibitory factorAcute kidney injuryRecombinant macrophage migration inhibitory factorIschemia-reperfusion injuryCardiac surgeryMigration inhibitory factorTubular epithelial cellsKidney injuryHigher macrophage migration inhibitory factorIncidence of AKIPathogenesis of AKIUrinary Macrophage Migration Inhibitory FactorExperimental acute kidney injuryExperimental ischemia-reperfusion injuryInhibitory factorMyocardial ischemia-reperfusion injuryOxidative stressMIF serum concentrationsCardiac surgery patientsRenal tubular epithelial cellsConventional cardiac surgeryEpithelial cellsHours of reperfusionSetting of hypoxiaTubular cell injurySemaphorin 7A in circulating regulatory T cells is increased in autosomal-dominant polycystic kidney disease and decreases with tolvaptan treatment
Lee Y, Blount KL, Dai F, Thompson S, Scher JK, Bitterman S, Droher M, Herzog EL, Moeckel G, Karihaloo A, Dahl NK. Semaphorin 7A in circulating regulatory T cells is increased in autosomal-dominant polycystic kidney disease and decreases with tolvaptan treatment. Clinical And Experimental Nephrology 2018, 22: 906-916. PMID: 29453607, DOI: 10.1007/s10157-018-1542-x.Peer-Reviewed Original ResearchConceptsPeripheral blood mononuclear cellsAutosomal dominant polycystic kidney diseaseEnd-stage renal diseaseRenal fibrosisSEMA7A expressionADPKD patientsTolvaptan treatmentPolycystic kidney diseaseKidney diseaseNumber of PBMCsExpression of SEMA7ASubsequent renal fibrosisMarkers of inflammationRegulatory T cellsADPKD kidneysBlood mononuclear cellsImmunomodulating proteinsRenal diseaseMononuclear cellsSmall kidneysKidney fibrosisLiver fibrosisRenal cystsSemaphorin 7AT cells
2017
Loss of the podocyte glucocorticoid receptor exacerbates proteinuria after injury
Zhou H, Tian X, Tufro A, Moeckel G, Ishibe S, Goodwin J. Loss of the podocyte glucocorticoid receptor exacerbates proteinuria after injury. Scientific Reports 2017, 7: 9833. PMID: 28852159, PMCID: PMC5575043, DOI: 10.1038/s41598-017-10490-z.Peer-Reviewed Original ResearchConceptsKnockout miceGlucocorticoid receptorNephrotic syndromeSimilar renal functionMainstay of therapyReceptor knockout miceTreatment of proteinuriaFoot process effacementMechanism of actionImmunomodulatory therapyRenal functionGlomerular injuryProtein excretionKO miceCommon disorderNephrotoxic serumPodocyte injuryPodocyte-specific deletionMouse modelSlit diaphragm proteinsWild-type podocytesProcess effacementProteinuriaUnstimulated conditionsKnockout animalsMIF-2/D-DT enhances proximal tubular cell regeneration through SLPI- and ATF4-dependent mechanisms
Ochi A, Chen D, Schulte W, Leng L, Moeckel N, Piecychna M, Averdunk L, Stoppe C, Bucala R, Moeckel G. MIF-2/D-DT enhances proximal tubular cell regeneration through SLPI- and ATF4-dependent mechanisms. American Journal Of Physiology. Renal Physiology 2017, 313: f767-f780. PMID: 28539339, PMCID: PMC6148305, DOI: 10.1152/ajprenal.00683.2016.Peer-Reviewed Original ResearchMeSH KeywordsActivating Transcription Factor 4Acute Kidney InjuryAnimalsAntigens, Differentiation, B-LymphocyteApoptosisAutophagyCell HypoxiaCell LineCell ProliferationCyclin D1Disease Models, AnimalEukaryotic Initiation Factor-2FemaleGenetic Predisposition to DiseaseHistocompatibility Antigens Class IIIntramolecular OxidoreductasesKidney Tubules, ProximalMacrophage Migration-Inhibitory FactorsMaleMice, Inbred C57BLMice, KnockoutPhenotypeRegenerationReperfusion InjurySecretory Leukocyte Peptidase InhibitorSignal TransductionTime FactorsTransfectionConceptsMacrophage migration inhibitory factorSecretory leukocyte proteinase inhibitorTubular cell regenerationProximal tubular cellsD-DTCell regenerationTubular cellsIschemic acute kidney injuryIschemia-reperfusion injury modelWild-type control miceMouse proximal tubular cellsAcute kidney injuryIschemia-reperfusion injuryRenal proximal tubular cellsMigration inhibitory factorIntegrated stress responseATF4-dependent mechanismCyclin D1 expressionEukaryotic initiation factorKidney injuryTubular injuryControl miceChemokine receptorsInjury modelInflammatory contextRapamycin treatment dose‐dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell‐cycle‐associated CDK1/cyclin axis
Li A, Fan S, Xu Y, Meng J, Shen X, Mao J, Zhang L, Zhang X, Moeckel G, Wu D, Wu G, Liang C. Rapamycin treatment dose‐dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell‐cycle‐associated CDK1/cyclin axis. Journal Of Cellular And Molecular Medicine 2017, 21: 1619-1635. PMID: 28244683, PMCID: PMC5543471, DOI: 10.1111/jcmm.13091.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibiotics, AntineoplasticCDC2 Protein KinaseCell CycleCyclinsDose-Response Relationship, DrugFemaleFounder EffectGene Expression RegulationHumansIntegrasesKidneyMaleMiceMice, TransgenicMicrofilament ProteinsPolycystic Kidney, Autosomal DominantPromoter Regions, GeneticSignal TransductionSirolimusTOR Serine-Threonine KinasesTRPP Cation ChannelsConceptsAutosomal dominant polycystic kidney diseaseEnd-stage renal diseaseMouse modelCyclin-dependent kinase 1Kidney/body weight ratioPreclinical trialsVivo preclinical resultsBody weight ratioCre transgenic miceHigh-dose rapamycinStandardized animal modelHuman autosomal dominant polycystic kidney diseaseRapamycin (mTOR) inhibitor rapamycinDominant polycystic kidney diseaseMonths of ageOrthologous mouse modelConditional knockout miceDose-dependent mannerPolycystic kidney diseaseAberrant epithelial cell proliferationEpithelial cell proliferationNew molecular targetsADPKD therapyRenal functionADPKD mouse modelHistones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI
Nakazawa D, Kumar SV, Marschner J, Desai J, Holderied A, Rath L, Kraft F, Lei Y, Fukasawa Y, Moeckel GW, Angelotti ML, Liapis H, Anders HJ. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. Journal Of The American Society Of Nephrology 2017, 28: 1753-1768. PMID: 28073931, PMCID: PMC5461800, DOI: 10.1681/asn.2016080925.Peer-Reviewed Original ResearchConceptsNeutrophil extracellular trap formationExtracellular trap formationNeutrophil extracellular trapsTubular necrosisExtracellular trapsCell necrosisTubular epithelial cell deathTubular epithelial cell necrosisRemote organ dysfunctionRemote organ injuryRemote organ damageRenal ischemic injuryTubular cell necrosisIschemia-reperfusion injuryRemote tissue injuryAdditive protective effectEpithelial cell necrosisTUNEL-positive cellsEpithelial cell deathNovel molecular targetsTrap formationIschemic AKISevere AKIKidney injuryMultiorgan dysfunction
2016
Isoforms of Spectrin and Ankyrin Reflect the Functional Topography of the Mouse Kidney
Stankewich MC, Moeckel GW, Ji L, Ardito T, Morrow JS. Isoforms of Spectrin and Ankyrin Reflect the Functional Topography of the Mouse Kidney. PLOS ONE 2016, 11: e0142687. PMID: 26727517, PMCID: PMC4703142, DOI: 10.1371/journal.pone.0142687.Peer-Reviewed Original ResearchConceptsBowman's capsuleEndothelial cellsFunctional topographyThick ascending loopGlomerular endothelial cellsProximal tubule cellsCapillary endothelial cellsAscending loopDistal tubulesDistal nephronTubule cellsTubular segmentsKidneyRodent kidneyWestern blottingMouse kidneyImmuno-electron microscopyThick loopAnkyrin GMetabolite traffickingSpectrin scaffoldHenleNephronCapsulePodocytes
2015
Human Polycystin-2 Transgene Dose-Dependently Rescues ADPKD Phenotypes in Pkd2 Mutant Mice
Li A, Tian X, Zhang X, Huang S, Ma Y, Wu D, Moeckel G, Somlo S, Wu G. Human Polycystin-2 Transgene Dose-Dependently Rescues ADPKD Phenotypes in Pkd2 Mutant Mice. American Journal Of Pathology 2015, 185: 2843-2860. PMID: 26435415, PMCID: PMC4607765, DOI: 10.1016/j.ajpath.2015.06.014.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseaseMouse modelADPKD phenotypeSevere cystic phenotypeWild-type miceDose-dependent mannerPolycystic kidney diseaseForms of ADPKDKidney diseasePancreatic cystsEffective treatmentFunctional restorationMutant miceTransgene doseMiceCyst formationReduced proliferationEpithelial cellsCystic phenotypeKidneyLiverFurther ameliorationPC2 activityPhenotypeMolecular genetic mechanismsThree-Dimensional Morphology by Multiphoton Microscopy with Clearing in a Model of Cisplatin-Induced CKD
Torres R, Velazquez H, Chang JJ, Levene MJ, Moeckel G, Desir GV, Safirstein R. Three-Dimensional Morphology by Multiphoton Microscopy with Clearing in a Model of Cisplatin-Induced CKD. Journal Of The American Society Of Nephrology 2015, 27: 1102-1112. PMID: 26303068, PMCID: PMC4814184, DOI: 10.1681/asn.2015010079.Peer-Reviewed Original ResearchConceptsAtubular glomeruliGlomerular capsuleRole of fibrosisModel of cisplatinNew mouse modelUseful morphologic informationMultiphoton microscopyTraditional histologic methodsRenal diseaseCisplatin therapyGlomerular volumePathologic changesRenal sectionsCKDMouse modelCisplatin effectCisplatin exposureImportant causeMild increaseCuboidal cellsHistologic methodsMorphologic informationFibrosisTherapyGlomeruliEssential Role of X-Box Binding Protein-1 during Endoplasmic Reticulum Stress in Podocytes
Hassan H, Tian X, Inoue K, Chai N, Liu C, Soda K, Moeckel G, Tufro A, Lee AH, Somlo S, Fedeles S, Ishibe S. Essential Role of X-Box Binding Protein-1 during Endoplasmic Reticulum Stress in Podocytes. Journal Of The American Society Of Nephrology 2015, 27: 1055-1065. PMID: 26303067, PMCID: PMC4814187, DOI: 10.1681/asn.2015020191.Peer-Reviewed Original ResearchConceptsX-box binding protein 1Endoplasmic reticulum stress responseEndoplasmic reticulum stressGlomerular filtration barrierPodocyte injuryReticulum stress responseBinding protein 1Reticulum stressProtein 1Filtration barrierFoot process effacementProgressive albuminuriaMouse modelProcess effacementUnfolded protein response pathwayEpithelial cellsNormal glomerular filtration barrierProtein response pathwayEndoplasmic reticulumPodocytesGenetic inactivationXBP1 pathwayInjuryJNK pathwayStress response
2014
Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors
Yuan A, Lee Y, Choi U, Moeckel G, Karihaloo A. Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors. American Journal Of Physiology. Renal Physiology 2014, 308: f459-f472. PMID: 25537742, PMCID: PMC4346747, DOI: 10.1152/ajprenal.00146.2014.Peer-Reviewed Original ResearchConceptsUnilateral ureteral obstructionCXCR4 expressionKidney fibrosisChemokine receptorsFibrotic responseSmooth muscle actin levelsG protein-coupled chemokine receptorsGrowth factorChronic kidney inflammationProgressive tissue injuryChronic kidney diseaseHigh CXCR4 expressionTGF-β1 levelsEffector cell typesProgression of fibrosisScarring/fibrosisFinal common pathwayPlatelet-derived growth factorRenal injuryKidney inflammationObstructed kidneysBone morphogenetic protein-7Renal fibrosisUreteral obstructionKidney diseaseSemaphorin3a Promotes Advanced Diabetic Nephropathy
Aggarwal PK, Veron D, Thomas DB, Siegel D, Moeckel G, Kashgarian M, Tufro A. Semaphorin3a Promotes Advanced Diabetic Nephropathy. Diabetes 2014, 64: 1743-1759. PMID: 25475434, PMCID: PMC4407856, DOI: 10.2337/db14-0719.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsChromonesCollagen Type IVDiabetes Mellitus, ExperimentalDiabetic NephropathiesEnzyme-Linked Immunosorbent AssayGene Expression RegulationGene Knockdown TechniquesHumansIntegrin alphaVbeta3LamininMembrane ProteinsMiceMice, KnockoutMicrofilament ProteinsMicrotubule-Associated ProteinsMixed Function OxygenasesNerve Tissue ProteinsPodocytesProteinuriaReceptors, Cell SurfaceRenal InsufficiencySemaphorin-3AWT1 ProteinsXanthonesConceptsAdvanced diabetic nephropathyDiabetic nephropathyRenal insufficiencyDiffuse podocyte foot process effacementPodocyte foot process effacementSevere diabetic nephropathyCollagen IV accumulationPotential therapeutic targetFoot process effacementGlomerular nodulesKimmelstiel-WilsonRenal biopsyGlomerular filtration barrierNodular glomerulosclerosisDiabetic miceMassive proteinuriaNovel therapiesDisease outcomePathogenic factorsTargetable pathwaysTherapeutic targetProcess effacementBarrier abnormalitiesFunction miceNephropathyGM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury
Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG. GM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury. Journal Of The American Society Of Nephrology 2014, 26: 1334-1345. PMID: 25388222, PMCID: PMC4446881, DOI: 10.1681/asn.2014060612.Peer-Reviewed Original ResearchMeSH KeywordsAcute Kidney InjuryAnalysis of VarianceAnimalsBlotting, WesternCell ProliferationCells, CulturedDisease Models, AnimalGene Expression RegulationGranulocyte-Macrophage Colony-Stimulating FactorImmunohistochemistryKidney Tubules, ProximalMacrophage ActivationMaleMiceMice, Inbred C57BLMultivariate AnalysisPhenotypeRandom AllocationReal-Time Polymerase Chain ReactionReperfusion InjurySignal TransductionUp-RegulationConceptsIschemia/reperfusion injuryMacrophage alternative activationBone marrow-derived macrophagesAlternative activationMarrow-derived macrophagesTubular cellsGM-CSFReperfusion injuryReparative phenotypeTubular proliferationKidney ischemia/reperfusion injuryRenal ischemia/reperfusion injuryMouse proximal tubule cellsInitial kidney damageRepair phaseProximal tubule cellsTubular factorsIschemic injuryKidney damageProinflammatory macrophagesRenal repairMacrophage activationTubule cellsPharmacologic inhibitionMacrophagesRole of medullary progenitor cells in epithelial cell migration and proliferation
Chen D, Chen Z, Zhang Y, Park C, Al-Omari A, Moeckel GW. Role of medullary progenitor cells in epithelial cell migration and proliferation. American Journal Of Physiology. Renal Physiology 2014, 307: f64-f74. PMID: 24808539, PMCID: PMC4080159, DOI: 10.1152/ajprenal.00547.2013.Peer-Reviewed Original ResearchConceptsProgenitor cellsEpithelial cell migrationSide populationInterstitial cell lineEpithelial cellsBone marrow-derived stem cellsCell migrationMarrow-derived stem cellsInjury repairMedullary interstitiumDuct cellsInner medullaCell proliferationCell linesProliferationTubule formationStem cellsInterstitial progenitor cellsDifferentiation mediumCellsPhenotypic characteristicsCritical roleIMCD3 cellsPGE2CXCR4Loss of Polycystin-1 Inhibits Bicc1 Expression during Mouse Development
Lian P, Li A, Li Y, Liu H, Liang D, Hu B, Lin D, Jiang T, Moeckel G, Qin D, Wu G. Loss of Polycystin-1 Inhibits Bicc1 Expression during Mouse Development. PLOS ONE 2014, 9: e88816. PMID: 24594709, PMCID: PMC3940423, DOI: 10.1371/journal.pone.0088816.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseasePolycystic kidney diseasePolycystin-1Gene productsKidney developmentKidney diseaseRNA-binding proteinMouse kidney developmentPKD1 gene productEmbryonic day 8.5Human autosomal dominant polycystic kidney diseaseNew molecular linkTemporal expression patternsEarly ureteric budDominant polycystic kidney diseaseC. elegansHuman polycystic kidney diseaseMouse embryogenesisMouse developmentPostnatal kidney developmentMouse homologueCystic phenotypeExpression patternsMolecular linkMultiple species