2024
Flat Panel TOF-PET Detectors: a Simulation Study
Orehar M, Dolenec R, Fakhri G, Gascón D, Gola A, Korpar S, Križan P, Razdevšek G, Marin T, Chemli Y, Žontar D, Pestotnik R. Flat Panel TOF-PET Detectors: a Simulation Study. 2024, 00: 1-2. DOI: 10.1109/nss/mic/rtsd57108.2024.10658250.Peer-Reviewed Original ResearchTime resolutionAngular coverageFlat-panel detectorScintillation materialsGATE softwareAxial coverageBiograph VisionPanel detectorTotal-body coverageClinical scannerImage reconstructionDetectorReconstructed imagesHomogeneous contrastCylindrical scannerImage qualityState-of-the-artScintillationHigh-performance computingScannerPhantomResolutionCore hoursPositron emission tomographyGateThe United States Department of Energy and National Institutes of Health Collaboration: Medical Care Advances by Discovery in Radiation Detection
Buchsbaum J, Capala J, Obcemea C, Keppel C, Asai M, Chen G, Christy M, Fakhri G, Gueye P, Pogue B, Ruckman L, Tourassi G, Vetter K, Zhao W, Squires A, Saboury B, Wang G, Domurat‐Sousa K, Weisenberger A. The United States Department of Energy and National Institutes of Health Collaboration: Medical Care Advances by Discovery in Radiation Detection. Medical Physics 2024, 51: 8654-8669. PMID: 39177300, PMCID: PMC11659064, DOI: 10.1002/mp.17333.Peer-Reviewed Original ResearchNational Institutes of HealthState-of-the-artApplication of artificial intelligenceDOE Office of ScienceArtificial intelligenceMedical care advancesImage reconstructionIn-person workshopsOffice of ScienceRadiation detectionHealth collaborationInstitutes of HealthCare advancesIn-personAreas of successEvaluation of few-shot detection of head and neck anatomy in CT
Lee K, Cho J, Lee J, Xing F, Liu X, Bae H, Lee K, Hwang J, Park J, Fakhri G, Jee K, Woo J. Evaluation of few-shot detection of head and neck anatomy in CT. Progress In Biomedical Optics And Imaging 2024, 12927: 1292716-1292716-7. DOI: 10.1117/12.3006895.Peer-Reviewed Original ResearchFew-shot object detection methodMedical image dataFew-shot object detectionObject detection methodsObject detectionImage dataObject detection approachState-of-the-artFaster R-CNNFine-tuning stageDeep learning modelsDetection methodFew-shotDetection of anatomical structuresDownstream tasksNatural imagesR-CNNDetect objectsDetection headDetection approachPreprocessing stepDetect anatomical structuresLearning modelsExperimental resultsClinical workflow
2023
Self-Supervised Domain Adaptive Segmentation of Breast Cancer via Test-Time Fine-Tuning
Lee K, Lee H, El Fakhri G, Woo J, Hwang J. Self-Supervised Domain Adaptive Segmentation of Breast Cancer via Test-Time Fine-Tuning. Lecture Notes In Computer Science 2023, 14220: 539-550. DOI: 10.1007/978-3-031-43907-0_52.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domainState-of-the-art performanceUnsupervised domain adaptation modelWell-trained deep learning modelDomain adaptation tasksDomain adaptive segmentationState-of-the-artAdaptive feature extractionFine-tuning phaseFeatures of datasetsLarge-scale datasetsDeep learning modelsDomain adaptationUnlabeled dataLabeled dataSegmentation taskNetwork architectureSource domainFeature extractionLatent featuresModel deploymentNetwork parametersBreast cancer datasetAdaptive segmentationFine-Tuning Network in Federated Learning for Personalized Skin Diagnosis
Lee K, Lee H, Cavalcanti T, Kim S, El Fakhri G, Lee D, Woo J, Hwang J. Fine-Tuning Network in Federated Learning for Personalized Skin Diagnosis. Lecture Notes In Computer Science 2023, 14222: 378-388. DOI: 10.1007/978-3-031-43898-1_37.Peer-Reviewed Original ResearchFederated learningSkin disease diagnosisMobile devicesState-of-the-art approachesUtilization of mobile devicesFine-tuning networkState-of-the-artFine-tuning methodAbstract Federated learningDeep learning networkField of medical diagnosisDeep networksLearning networkAdaptive mannerModified GADisease diagnosisGenetic algorithmSuperior performanceMedical diagnosisArchitectural designClinical datasetsExperimental resultsNetworkModel designPersonality diversityOutlier Robust Disease Classification via Stochastic Confidence Network
Lee K, Lee H, El Fakhri G, Sepulcre J, Liu X, Xing F, Hwang J, Woo J. Outlier Robust Disease Classification via Stochastic Confidence Network. Lecture Notes In Computer Science 2023, 14394: 80-90. DOI: 10.1007/978-3-031-47425-5_8.Peer-Reviewed Original ResearchDeep learningState-of-the-art modelsAccuracy of deep learningState-of-the-artMedical image dataMedical imaging modalitiesImage patchesIrrelevant patchesCategorical featuresPresence of outliersDL modelsConfidence networkConfidence predictionsClassifying outliersData samplesImage dataOutliersExperimental resultsDisease classificationImprove diagnostic performanceClassificationDiagnosing breast tumorsUltrasound imagingPerformanceImages
2022
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling
Djebra Y, Marin T, Han P, Bloch I, Fakhri G, Ma C. Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling. IEEE Transactions On Medical Imaging 2022, 42: 158-169. PMID: 36121938, PMCID: PMC10024645, DOI: 10.1109/tmi.2022.3207774.Peer-Reviewed Original ResearchConceptsSpace alignmentSampled k-space dataState-of-the-art methodsIntrinsic low-dimensional manifold structureNumerical simulation studyLow-dimensional manifold structureState-of-the-artLinear subspace modelSparsity modelModel-based frameworkSubspace modelManifold structureMathematical modelManifold modelSparse samplingImage reconstructionMRI applicationsDynamic magnetic resonance imagingSpatiotemporal signalsSpatial resolutionPerformanceSimulation studyImagesMethodSparsityOptimization of Design Parameters of Flat Panel Limited Angle TOF-PET Scanner: a Simulation Study
Orehar M, Dolenec R, Fakhri G, Gascón D, Gola A, Korpar S, Križan P, Razdevšek G, Pestotnik R. Optimization of Design Parameters of Flat Panel Limited Angle TOF-PET Scanner: a Simulation Study. 2022, 00: 1-4. DOI: 10.1109/nss/mic44845.2022.10399330.Peer-Reviewed Original ResearchImage quality phantomFlat-panel detectorGATE softwareRing scannerPanel detectorDetection chainState-of-the-artNEMA standardsOpen geometryImage reconstructionReconstructed imagesPositron emission tomographyState-of-the-art scannersScannerPhantomDetectorPhotodetectorsElectronNEMAMaterial costGatePositronACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training
Liu X, Xing F, Shusharina N, Lim R, Jay Kuo C, El Fakhri G, Woo J. ACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training. Lecture Notes In Computer Science 2022, 13435: 66-76. PMID: 36780245, PMCID: PMC9911133, DOI: 10.1007/978-3-031-16443-9_7.Peer-Reviewed Original ResearchSemi-supervised domain adaptationUnsupervised domain adaptationSemi-supervised learningMedical image segmentationDomain adaptationDomain shiftLabel supervisionTarget domainImage segmentationDomain dataLeverage different knowledgePseudo-label noiseSignificant domain shiftSupervised joint trainingLabeled source domainUnlabeled target dataUnlabeled target domainLabeled target samplesTarget domain dataSource domain dataState-of-the-artMRI segmentation taskSubstantial performance gainsPseudo-labelsLabel noiseVoxelHop: Successive Subspace Learning for ALS Disease Classification Using Structural MRI
Liu X, Xing F, Yang C, Kuo C, Babu S, Fakhri G, Jenkins T, Woo J. VoxelHop: Successive Subspace Learning for ALS Disease Classification Using Structural MRI. IEEE Journal Of Biomedical And Health Informatics 2022, 26: 1128-1139. PMID: 34339378, PMCID: PMC8807766, DOI: 10.1109/jbhi.2021.3097735.Peer-Reviewed Original ResearchConceptsConvolutional neural networkLearning modelsDimension reductionSubspace learning modelConcatenation of featuresState-of-the-artUnsupervised dimension reductionDeep learning modelsMedical image dataSupervised dimension reductionImage dataClassification of amyotrophic lateral sclerosisSubspace learningClassification taskDeep learningDataset sizeNeural networkSubspace approximationMemory requirementsTraining datasetClassification approachAUC scoreAccurate classificationDatasetExperimental results
2020
High-performance rapid MR parameter mapping using model-based deep adversarial learning
Liu F, Kijowski R, Feng L, El Fakhri G. High-performance rapid MR parameter mapping using model-based deep adversarial learning. Magnetic Resonance Imaging 2020, 74: 152-160. PMID: 32980503, PMCID: PMC7669737, DOI: 10.1016/j.mri.2020.09.021.Peer-Reviewed Original ResearchConceptsConvolutional neural networkMR parameter mappingAdversarial learningState-of-the-art reconstruction methodsEnd-to-end convolutional neural networkUndersampled k-space dataConvolutional neural network approachAdversarial learning approachState-of-the-artStructural similarity indexImage reconstruction frameworkEnd-to-endImage sharpnessData consistencyConventional reconstruction approachesReconstruction approachK-space dataImprove image sharpnessImage reconstruction approachEstimated parameter mapsImage sparsityTexture restorationNetwork trainingImage datasetsReconstruction performance
2019
Computational-efficient cascaded neural network for CT image reconstruction
Wu D, Kim K, Fakhri G, Li Q. Computational-efficient cascaded neural network for CT image reconstruction. Progress In Biomedical Optics And Imaging 2019, 10948: 109485z-109485z-6. DOI: 10.1117/12.2511526.Peer-Reviewed Original ResearchCascaded neural networkNeural networkImage reconstructionCT image reconstructionMemory consumptionDevelopment of deep learningDeep artificial neural networksState-of-the-artMedical image reconstructionReduce memory consumptionImage reconstruction qualitySparse-view samplingTraining ground truthUnrolling networkImage priorsImage quality improvementImage patchesReconstruction qualityDeep learningArtificial neural networkImage domainUndersampled projectionsTraining phaseTraining processParameter tuning
2018
Subject-specific brain tumor growth modelling via an efficient Bayesian inference framework
Chang Y, Sharp G, Li Q, Shih H, El Fakhri G, Ra J, Woo J. Subject-specific brain tumor growth modelling via an efficient Bayesian inference framework. Proceedings Of SPIE--the International Society For Optical Engineering 2018, 10574: 105742i. PMID: 30050231, PMCID: PMC6056378, DOI: 10.1117/12.2293145.Peer-Reviewed Original ResearchTumor growthOptimal treatmentExternal beam radiotherapyBrain tumor progressionBeam radiotherapyBrain tumor growthTumor growth modelTumor infiltrationTumor parametersTumor progressionEffective therapyClinical dataTherapy planningTumorIndividualized therapyTherapyTumor boundariesProliferation rateRadiotherapyNon-invasiveState-of-the-art methodsTreatmentState-of-the-artChemotherapy