2023
Bone Mass Changes Following Percutaneous Radiofrequency Ablation, Osteoplasty, Reinforcement, and Internal Fixation of Periacetabular Osteolytic Metastases
Jiang W, Caruana D, Dussik C, Conway D, Latich I, Chapiro J, Lindskog D, Friedlaender G, Lee F. Bone Mass Changes Following Percutaneous Radiofrequency Ablation, Osteoplasty, Reinforcement, and Internal Fixation of Periacetabular Osteolytic Metastases. Journal Of Clinical Medicine 2023, 12: 4613. PMID: 37510728, PMCID: PMC10380351, DOI: 10.3390/jcm12144613.Peer-Reviewed Original ResearchPercutaneous radiofrequency ablationBone mass changesCT scanMedian survivalHounsfield unitsOsteolytic metastasesRadiofrequency ablationBone massCancer-induced bone lossSuperior median survivalAvailable CT scansThree-dimensional volumetric analysisInternal screw fixationPeriacetabular areaPercutaneous stabilizationBone lossInternal fixationSingle institutionOrthopedic interventionsScrew fixationPatientsMonthsVolumetric analysisSurvivalScans
2019
Metastatic Cancers to Bone: An Overview and Cancer-Induced Bone Loss.
Ibe IK, Sahlstrom A, White A, Henderson SE, Lee FY. Metastatic Cancers to Bone: An Overview and Cancer-Induced Bone Loss. Instructional Course Lectures 2019, 68: 547-556. PMID: 32032068.Peer-Reviewed Original ResearchConceptsCancer-induced bone lossBone lossBone metastasesMetastatic bone diseaseCancer cellsDegree of osteolysisNormal bone homeostasisBenefit of patientsOsteolytic metastasesSkeletal metastasesPatient functionSurgical stabilizationWorse prognosisLocal bone massBone massMetastatic cancerBone diseaseRadiation therapyTherapeutic modalitiesBone homeostasisImmune systemOverall outcomeMetastasisBone remodelingPatientsPharmacologic and Radiation Therapies for Cancer-Induced Bone Loss.
Henderson SE, Dussik C, Brand J, Ibe IK, Lee FY. Pharmacologic and Radiation Therapies for Cancer-Induced Bone Loss. Instructional Course Lectures 2019, 68: 557-566. PMID: 32032067.Peer-Reviewed Original Research
2015
Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response
Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, Lee FY, Oh DS, Tawfeek HA. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response. Endocrinology 2015, 157: 112-126. PMID: 26488807, DOI: 10.1210/en.2015-1614.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsBone DensityCells, CulturedEnergy MetabolismEnzyme ActivationFemaleFemurLumbar VertebraeMaleMice, Inbred C57BLMice, TransgenicOsteoblastsOsteocytesOsteogenesisPoint MutationPromoter Regions, GeneticSex CharacteristicsUp-RegulationX-Ray MicrotomographyConceptsBone anabolic responseOb miceMature osteoblastsPKA activationHigher basal PKA activityControl miceAnabolic responseProtein kinase ASerum bone turnover markersBone volume/total volumeBone turnover markersBasal PKA activityFemur cortical thicknessTotal tissue areaActive PKAKinase AConstitutive activationPKA activityTurnover markersBone lossAnabolic drugsStructure model indexOsteoclast numberFemale miceBone mass
2008
Enhancement of Periprosthetic Bone Quality with Topical Hydroxyapatite-Bisphosphonate Composite
Suratwala SJ, Cho SK, van Raalte JJ, Park SH, Seo SW, Chang SS, Gardner TR, Lee FY. Enhancement of Periprosthetic Bone Quality with Topical Hydroxyapatite-Bisphosphonate Composite. Journal Of Bone And Joint Surgery 2008, 90: 2189-2196. PMID: 18829917, PMCID: PMC2657477, DOI: 10.2106/jbjs.g.00409.Peer-Reviewed Original ResearchConceptsPeriprosthetic bone qualityPeriprosthetic bone massSix-month groupBone qualitySix weeksOsseous integrationBone massParticle-induced periprosthetic osteolysisImplant looseningDual X-ray absorptiometryInflammatory bone lossX-ray absorptiometryMean bone areaUltra-high molecular weight polyethyleneBone lossSix-week groupUltra-high molecular weight polyethylene particlesIntramedullary nailFemoral canalMolecular weight polyethyleneControl groupPeriprosthetic osteolysisBone areaPeak pullout forceIntramedullary implantsWhat are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles?
Tuan RS, Lee FY, T Konttinen Y, Wilkinson JM, Smith RL. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? Journal Of The American Academy Of Orthopaedic Surgeons 2008, 16 Suppl 1: s42-8. PMID: 18612013, PMCID: PMC2714366, DOI: 10.5435/00124635-200800001-00010.Peer-Reviewed Original ResearchMeSH KeywordsBasic Helix-Loop-Helix Transcription FactorsBiocompatible MaterialsBone ResorptionDinoprostoneEndothelial CellsFibroblastsForeign-Body ReactionHumansInterleukin-1Interleukin-6Interleukin-8Joint ProsthesisMacrophage Colony-Stimulating FactorOsteoclastsOsteogenesisProsthesis FailureRANK LigandStem CellsT-LymphocytesTumor Necrosis Factor-alphaConceptsBone lossTNF-alphaIL-1Inflammatory bone lossPro-osteoclastogenic cytokinesGene functionHost inflammatory responsePeriprosthetic bone lossBone marrow-derived mesenchymal stem cellsMarrow-derived mesenchymal stem cellsGenetic variationBasic science dataMolecular mechanismsMesenchymal stem cellsMechanism of actionPeriprosthetic inflammationIL-6IL-8M-SCFInflammatory responseT cellsStem cellsAltered susceptibilityBiologic effectsOsteoprogenitor cells