2007
State Changes Rapidly Modulate Cortical Neuronal Responsiveness
Hasenstaub A, Sachdev RN, McCormick DA. State Changes Rapidly Modulate Cortical Neuronal Responsiveness. Journal Of Neuroscience 2007, 27: 9607-9622. PMID: 17804621, PMCID: PMC6672966, DOI: 10.1523/jneurosci.2184-07.2007.Peer-Reviewed Original ResearchConceptsNeuronal responsivenessWhisker stimulationWhisker stimuliCircuit activityCortical neuronal responsivenessLocal circuit activityNetwork activityAction potential responsesLocal network activityRodent somatosensory cortexPostsynaptic potentialsSomatosensory cortexCortical neuronsIntracellular injectionWhisker deflectionCortical stateWhisker movementsPotential responsivenessAbility of stimuliSensory stimuliInhibitory mechanismStimulationResponsivenessSpontaneous alterationUp states
2005
Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks
Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick D. Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks. Neuron 2005, 47: 423-435. PMID: 16055065, DOI: 10.1016/j.neuron.2005.06.016.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsCerebral CortexCortical SynchronizationExcitatory Postsynaptic PotentialsFerretsIn Vitro TechniquesInterneuronsMaleMembrane PotentialsNerve NetNeural InhibitionNeuronsOscillometryPyramidal CellsReaction TimeRefractory Period, ElectrophysiologicalSynapsesSynaptic TransmissionConceptsInhibitory postsynaptic potentialsHigh-frequency activityPostsynaptic potentialsPyramidal cellsCortical pyramidal cellsAction potential propertiesRecurrent network activityAction potential generationActive cortical networkInhibitory interneuronsCortical functionIntracellular injectionNearby neuronsStrong barragesInhibitory networksCortical networksField potentialsSynaptic conductancesIPSPsInhibitory potentialPotential generationNetwork activitySpike timingMore synchronyVivo
2003
Adaptation and Temporal Decorrelation by Single Neurons in the Primary Visual Cortex
Wang X, Liu Y, Sanchez-Vives M, McCormick D. Adaptation and Temporal Decorrelation by Single Neurons in the Primary Visual Cortex. Journal Of Neurophysiology 2003, 89: 3279-3293. PMID: 12649312, DOI: 10.1152/jn.00242.2003.Peer-Reviewed Original ResearchConceptsPrimary visual cortical neuronsVisual cortical slicesCellular mechanismsVisual cortical neuronsIntrinsic membrane propertiesPrimary visual cortexPossible cellular mechanismsSensory inputSlow afterhyperpolarizationIntrinsic ionic currentsCortical slicesLayer 2/3Cortical neuronsNeocortical neuronsIntracellular injectionV1 neuronsNeuronal responsesVisual cortexEfficient neural codingModel neuronsReal-world sensory inputsNeuronsIonic currentsProlonged changesSingle neurons
2000
Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo
Sanchez-Vives M, Nowak L, McCormick D. Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo. Journal Of Neuroscience 2000, 20: 4267-4285. PMID: 10818163, PMCID: PMC6772627, DOI: 10.1523/jneurosci.20-11-04267.2000.Peer-Reviewed Original ResearchConceptsPrimary visual cortexContrast adaptationDorsal lateral geniculate nucleus (dLGN) neuronsVisual cortexLateral geniculate nucleus neuronsCat primary visual cortexAction potential activityHigh-contrast visual stimulusIntrinsic neuronal mechanismsMembrane potentialApparent membrane conductanceVisual cortex cellsVisual stimuliLow-contrast stimuliNeuronal responsivenessDLGN cellsNucleus neuronsCortical neuronsIntracellular recordingsIntracellular injectionNeuronal activityReduced responsivenessSynaptic barragesNeuronal mechanismsFiring rateCellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro
Sanchez-Vives M, Nowak L, McCormick D. Cellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro. Journal Of Neuroscience 2000, 20: 4286-4299. PMID: 10818164, PMCID: PMC6772630, DOI: 10.1523/jneurosci.20-11-04286.2000.Peer-Reviewed Original ResearchConceptsSpike frequency adaptationSlow afterhyperpolarizationCortical neuronsFerret primary visual cortexProlonged dischargeCellular mechanismsVisual cortical neuronsPrimary visual cortexSlow spike frequency adaptationIntracellular recordingsIntracellular injectionRightward shiftAfterhyperpolarizationVisual cortexReversal potentialContrast adaptationNeuronsDischarge frequencyMembrane conductanceVivoVisual systemBlockadeCortexImportant role
1997
Influence of low and high frequency inputs on spike timing in visual cortical neurons.
Nowak L, Sanchez-Vives M, McCormick D. Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cerebral Cortex 1997, 7: 487-501. PMID: 9276174, DOI: 10.1093/cercor/7.6.487.Peer-Reviewed Original ResearchConceptsCortical neuronsAction potentialsFerret visual cortexAction potential dischargeVisual cortical neuronsInterspike intervalsAction potential generationAction potential timingTemporal precisionPostsynaptic potentialsGamma frequency rangeIntracellular recordingsIntracellular injectionVisual cortexPotential dischargeNeuronsVisual stimulationCortical networksRegular spikingSensory stimuliSingle trialHigh temporal precisionPotential timingHigh frequencyPotential generationSynchronized Oscillations in the Inferior Olive Are Controlled by the Hyperpolarization-Activated Cation Current I h
Bal T, McCormick D. Synchronized Oscillations in the Inferior Olive Are Controlled by the Hyperpolarization-Activated Cation Current I h. Journal Of Neurophysiology 1997, 77: 3145-3156. PMID: 9212264, DOI: 10.1152/jn.1997.77.6.3145.Peer-Reviewed Original ResearchConceptsLow-threshold Ca2Inferior olive nucleusIO neuronsGuinea pigsHyperpolarization-activated cationic currentLocal applicationDependent action potentialsPresence of apaminMembrane potentialInferior olive neuronsIntracellular recordingsIntracellular injectionPacemaker potentialsRhythmic generationInferior oliveAfterhyperpolarizationAction potentialsCationic currentRemoval of inactivationExtracellular applicationNeuronsHyperpolarizationApaminCa2Pigs
1996
Are the Interlaminar Zones of the Ferret Dorsal Lateral Geniculate Nucleus Actually Part of the Perigeniculate Nucleus?
Sanchez-Vives M, Bal T, Kim U, von Krosigk M, McCormick D. Are the Interlaminar Zones of the Ferret Dorsal Lateral Geniculate Nucleus Actually Part of the Perigeniculate Nucleus? Journal Of Neuroscience 1996, 16: 5923-5941. PMID: 8815875, PMCID: PMC6579195, DOI: 10.1523/jneurosci.16-19-05923.1996.Peer-Reviewed Original ResearchConceptsInterlaminar zonesThalamocortical cellsDorsal lateral geniculate nucleusFerret dorsal lateral geniculate nucleusFerret LGNdLow-threshold Ca2Calbindin-positive cellsLateral geniculate nucleusCalbindin stainingPerigeniculate neuronsPGN cellsContralateral eyeA-laminaeAxon collateralsC laminaePGN neuronsPerigeniculate nucleusGeniculate nucleusIntracellular injectionLamina AElectrophysiological propertiesLocal applicationProlonged depolarizationProlonged hyperpolarizationNeurons
1994
Developmental changes in electrophysiological properties of LGNd neurons during reorganization of retinogeniculate connections
Ramoa A, McCormick D. Developmental changes in electrophysiological properties of LGNd neurons during reorganization of retinogeniculate connections. Journal Of Neuroscience 1994, 14: 2089-2097. PMID: 8158259, PMCID: PMC6577110, DOI: 10.1523/jneurosci.14-04-02089.1994.Peer-Reviewed Original ResearchConceptsLGNd neuronsImmature neuronsAction potentialsElectrophysiological propertiesLittle spike frequency adaptationDependent action potentialsAction potential activityEarly postnatal lifeWhole-cell recordingsEarly postnatal developmentPatch-clamp techniqueSpike frequency adaptationHigh input resistanceDorsal LGNImmature synapsesCritical developmental periodRetinogeniculate connectionsMembrane potentialPostnatal weekIntracellular injectionPostnatal lifePostnatal developmentNeuronsInput resistanceFrequency adaptation
1993
Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker.
Bal T, McCormick D. Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker. The Journal Of Physiology 1993, 468: 669-691. PMID: 8254530, PMCID: PMC1143849, DOI: 10.1113/jphysiol.1993.sp019794.Peer-Reviewed Original ResearchConceptsLow-threshold Ca2Nucleus reticularis thalamiRhythmic burst firingThreshold Ca2Reticularis thalamiBurst firingExtracellular Ca2Action potentialsOscillatory activityShort-latency burstsSingle spike activityVitro. 2Fast action potentialsNon-selective cationSlow ADPThalamic afferentsTonic dischargeNRT cellsIntracellular recordingsIntracellular injectionSpike AHPsSpike activitySingle neuronesExtracellular applicationReversal potential
1985
Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex
McCormick D, Connors B, Lighthall J, Prince D. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal Of Neurophysiology 1985, 54: 782-806. PMID: 2999347, DOI: 10.1152/jn.1985.54.4.782.Peer-Reviewed Original ResearchConceptsRegular-spiking cellsAction potentialsSpiny stellate neuronsIntracellular recording techniquesAnterior cingulate areaDistinct neuronal classesAnterior cingulate cortexProminent afterhyperpolarizationTonic currentsStellate neuronsMean durationTrain of spikesCingulate areasFluorescent dye Lucifer Yellow CHDye Lucifer Yellow CHSynaptic pathwaysIntracellular injectionSpike frequencyCingulate cortexFast spikingSpike riseElectrophysiological propertiesNeuronal classesGuinea pigsComparative electrophysiology