1995
Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus
Pape H, McCormick D. Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 1995, 68: 1105-1125. PMID: 8544986, DOI: 10.1016/0306-4522(95)00205-w.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsCatsElectric StimulationElectrophysiologyExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsGABA-A Receptor AgonistsGABA-A Receptor AntagonistsGABA-B Receptor AgonistsGABA-B Receptor AntagonistsGamma-Aminobutyric AcidGeniculate BodiesIn Vitro TechniquesInterneuronsPatch-Clamp TechniquesThalamusConceptsDorsal lateral geniculate nucleusCat dorsal lateral geniculate nucleusLateral geniculate nucleusAction potentialsGeniculate nucleusGABAB receptor agonist baclofenGABAA receptor agonist muscimolSpontaneous action potential activityPharmacological propertiesStrong spike frequency adaptationSmall slow depolarizationSubpopulation of interneuronsReceptor agonist baclofenSpontaneous spike activityAction potential dischargeDorsal lateral geniculateReceptor agonist muscimolApplication of serotoninAction potential activityApplication of acetylcholineChloride equilibrium potentialHigh-frequency trainsSpike frequency adaptationUnique electrophysiological characteristicsAgonist baclofen
1989
Convergence and divergence of neurotransmitter action in human cerebral cortex.
McCormick D, Williamson A. Convergence and divergence of neurotransmitter action in human cerebral cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 8098-8102. PMID: 2573061, PMCID: PMC298222, DOI: 10.1073/pnas.86.20.8098.Peer-Reviewed Original ResearchConceptsHuman cerebral cortexPostsynaptic actionsCerebral cortexPutative neurotransmittersMuscarinic receptor agonistApplication of acetylcholineCortical pyramidal cellsGamma-aminobutyric acidDistinct potassium currentsSpecific anatomical connectionsSpike frequency adaptationPostsynaptic receptorsReceptor agonistPyramidal cellsNeurotransmitter systemsM-currentNeuronal firingNeurotransmitter actionPotassium currentCortical activityAnatomical connectionsSerotoninNeurotransmittersNorepinephrineAcetylcholine
1987
Actions of acetylcholine in the guinea‐pig and cat medial and lateral geniculate nuclei, in vitro.
McCormick D, Prince D. Actions of acetylcholine in the guinea‐pig and cat medial and lateral geniculate nuclei, in vitro. The Journal Of Physiology 1987, 392: 147-165. PMID: 2833597, PMCID: PMC1192298, DOI: 10.1113/jphysiol.1987.sp016774.Peer-Reviewed Original ResearchConceptsRapid excitatory responseSlow depolarizationApplication of acetylcholineLateral geniculate nucleusGeniculate nucleusMuscarinic hyperpolarizationExcitatory responsesMuscarinic receptorsReversal potentialDorsal lateral geniculate nucleusGeniculate neuronesApparent input conductanceSingle spike activityIntracellular recording techniquesAction of acetylcholineACh-induced hyperpolarizationExtrapolated reversal potentialSingle-spike firingMechanism of actionMembrane potentialBath applicationBurst firingBurst dischargesSynaptic transmissionThalamic slices
1986
Mechanisms of action of acetylcholine in the guinea‐pig cerebral cortex in vitro.
McCormick D, Prince D. Mechanisms of action of acetylcholine in the guinea‐pig cerebral cortex in vitro. The Journal Of Physiology 1986, 375: 169-194. PMID: 2879035, PMCID: PMC1182754, DOI: 10.1113/jphysiol.1986.sp016112.Peer-Reviewed Original ResearchConceptsNon-pyramidal cellsSlow excitatory responsesPyramidal neuronesMechanism of actionAction potentialsExcitatory responsesInhibitory responsesACh applicationGuinea pig cerebral cortexLayer V pyramidal cellsInhibitory post-synaptic potentialsGABAergic synaptic transmissionRelease of GABAShort-latency excitationSlow depolarizing responseApparent input resistanceACh-induced hyperpolarizationApplication of acetylcholineGamma-aminobutyric acidGuinea pig neocortexPost-synaptic potentialsAverage reversal potentialBarrages of excitatoryMinimum onset latencyAction potential generationAcetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance
McCormick D, Prince D. Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature 1986, 319: 402-405. PMID: 2418361, DOI: 10.1038/319402a0.Peer-Reviewed Original ResearchConceptsNeuronal activityCholinergic inhibitory mechanismSingle spike activityRole of acetylcholineApplication of acetylcholineCentral nervous systemIntrinsic membrane propertiesAcetylcholine inducesM2 subclassCholinergic actionCholinergic inhibitionCholinergic inputMuscarinic receptorsBurst dischargesExcitatory modulatorThalamic neuronesNervous systemSpike activityFiring patternsPotassium conductanceReticular neuronesAcetylcholineNeuronesReticular systemInhibitory mechanism
1985
Two types of muscarinic response to acetylcholine in mammalian cortical neurons.
McCormick D, Prince D. Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1985, 82: 6344-6348. PMID: 3862134, PMCID: PMC391050, DOI: 10.1073/pnas.82.18.6344.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidInput resistanceMuscarinic responsesPyramidal neuronsPyramidal cellsInhibitory neurotransmitter gamma-aminobutyric acidNeurotransmitter gamma-aminobutyric acidShort-latency depolarizationsShort-latency inhibitionMammalian cortical neuronsNeuronal input resistanceSlow excitatory responsesApplication of acetylcholineVoltage-dependent depolarizationCholinergic inhibitionExcitatory responsesCholinergic receptorsVoltage-dependent increaseCortical slicesGABAergic interneuronsNicotinic antagonistsCholinergic agonistsCortical neuronsSlow depolarizationNeocortical neurons