2015
Class II HLA interactions modulate genetic risk for multiple sclerosis
Moutsianas L, Jostins L, Beecham A, Dilthey A, Xifara D, Ban M, Shah T, Patsopoulos N, Alfredsson L, Anderson C, Attfield K, Baranzini S, Barrett J, Binder T, Booth D, Buck D, Celius E, Cotsapas C, D'Alfonso S, Dendrou C, Donnelly P, Dubois B, Fontaine B, Fugger L, Goris A, Gourraud P, Graetz C, Hemmer B, Hillert J, Consortium I, Kockum I, Leslie S, Lill C, Martinelli-Boneschi F, Oksenberg J, Olsson T, Oturai A, Saarela J, Søndergaard H, Spurkland A, Taylor B, Winkelmann J, Zipp F, Haines J, Pericak-Vance M, Spencer C, Stewart G, Hafler D, Ivinson A, Harbo H, Hauser S, De Jager P, Compston A, McCauley J, Sawcer S, McVean G. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics 2015, 47: 1107-1113. PMID: 26343388, PMCID: PMC4874245, DOI: 10.1038/ng.3395.Peer-Reviewed Original Research
2014
Chapter 52 Multiple Sclerosis
Hernandez A, O’Connor K, Hafler D. Chapter 52 Multiple Sclerosis. 2014, 735-756. DOI: 10.1016/b978-0-12-384929-8.00052-6.ChaptersMultiple sclerosisT cellsCell subsetsInflammatory autoimmune diseaseRegulatory T cellsT cell subsetsCNS white matterB cell subsetsImmune dysregulationTh1 subsetAutoimmune diseasesHumoral responseDisease evolutionInfectious agentsGenetic susceptibility lociProgressive neurodegenerationWhite matterCurrent diseaseGenetic riskDiseasePotential roleSclerosisSusceptible hostsTherapyPutative role
2011
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
, , Sawcer S, Hellenthal G, Pirinen M, Spencer C, Patsopoulos N, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt S, Edkins S, Gray E, Booth D, Potter S, Goris A, Band G, Oturai A, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D’alfonso S, Blackburn H, Boneschi F, Liddle J, Harbo H, Perez M, Spurkland A, Waller M, Mycko M, Ricketts M, Comabella M, Hammond N, Kockum I, McCann O, Ban M, Whittaker P, Kemppinen A, Weston P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead S, Barcellos L, Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini S, Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield J, Brassat D, Broadley S, Buck D, Butzkueven H, Capra R, Carroll W, Cavalla P, Celius E, Cepok S, Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox M, Cozen W, Cree B, Cross A, Cusi D, Daly M, Davis E, de Bakker P, Debouverie M, D’hooghe M, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F, Fontenille C, Foote S, Franke A, Galimberti D, Ghezzi A, Glessner J, Gomez R, Gout O, Graham C, Grant S, Guerini F, Hakonarson H, Hall P, Hamsten A, Hartung H, Heard R, Heath S, Hobart J, Hoshi M, Infante-Duarte C, Ingram G, Ingram W, Islam T, Jagodic M, Kabesch M, Kermode A, Kilpatrick T, Kim C, Klopp N, Koivisto K, Larsson M, Lathrop M, Lechner-Scott J, Leone M, Leppä V, Liljedahl U, Bomfim I, Lincoln R, Link J, Liu J, Lorentzen Å, Lupoli S, Macciardi F, Mack T, Marriott M, Martinelli V, Mason D, McCauley J, Mentch F, Mero I, Mihalova T, Montalban X, Mottershead J, Myhr K, Naldi P, Ollier W, Page A, Palotie A, Pelletier J, Piccio L, Pickersgill T, Piehl F, Pobywajlo S, Quach H, Ramsay P, Reunanen M, Reynolds R, Rioux J, Rodegher M, Roesner S, Rubio J, Rückert I, Salvetti M, Salvi E, Santaniello A, Schaefer C, Schreiber S, Schulze C, Scott R, Sellebjerg F, Selmaj K, Sexton D, Shen L, Simms-Acuna B, Skidmore S, Sleiman P, Smestad C, Sørensen P, Søndergaard H, Stankovich J, Strange R, Sulonen A, Sundqvist E, Syvänen A, Taddeo F, Taylor B, Blackwell J, Tienari P, Bramon E, Tourbah A, Brown M, Tronczynska E, Casas J, Tubridy N, Corvin A, Vickery J, Jankowski J, Villoslada P, Markus H, Wang K, Mathew C, Wason J, Palmer C, Wichmann H, Plomin R, Willoughby E, Rautanen A, Winkelmann J, Wittig M, Trembath R, Yaouanq J, Viswanathan A, Zhang H, Wood N, Zuvich R, Deloukas P, Langford C, Duncanson A, Oksenberg J, Pericak-Vance M, Haines J, Olsson T, Hillert J, Ivinson A, De Jager P, Peltonen L, Stewart G, Hafler D, Hauser S, McVean G, Donnelly P, Compston A. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476: 214-219. PMID: 21833088, PMCID: PMC3182531, DOI: 10.1038/nature10251.Peer-Reviewed Original ResearchMeSH KeywordsAllelesCell DifferentiationEuropeGenetic Predisposition to DiseaseGenome-Wide Association StudyGenome, HumanHLA-A AntigensHLA-DR AntigensHLA-DRB1 ChainsHumansImmunity, CellularMajor Histocompatibility ComplexMultiple SclerosisPolymorphism, Single NucleotideSample SizeT-Lymphocytes, Helper-InducerConceptsCollaborative genome-wide association studiesGenome-wide association studiesNovel susceptibility lociRegions of DNAGenetic architectureAssociation studiesSusceptibility lociDifferentiation of T helper cellsGenetic riskEuropean descentCell-mediated immune mechanismsT helper cellsCentral nervous systemImmune mechanismsLociIntensive studyDNAMultiple sclerosisNervous systemGeneticsNeurodegenerationDiseaseSclerosisDifferentiationCellsModeling the cumulative genetic risk for multiple sclerosis from genome-wide association data
Wang JH, Pappas D, De Jager PL, Pelletier D, de Bakker PI, Kappos L, Polman CH, Australian and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), Chibnik LB, Hafler DA, Matthews PM, Hauser SL, Baranzini SE, Oksenberg JR. Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data. Genome Medicine 2011, 3: 3. PMID: 21244703, PMCID: PMC3092088, DOI: 10.1186/gm217.Peer-Reviewed Original ResearchGenome-wide association studiesGenome-wide association dataDAVID functional annotation toolMS geneticsAssociation dataFunctional annotation toolAvailable genome-wide association dataRecent genome-wide association studiesPathway enrichment analysisNovel genetic associationsNervous system developmentPolygenic modelCumulative genetic riskGene OntologyGWAS datasetsEnrichment analysisGenetic riskAssociation studiesDisease locusCell adhesionSignificant enrichmentNeuronal signalingAnalysis of covarianceIonotropic glutamate receptorsGenetic association
2010
Genome-wide Association Study in a High-Risk Isolate for Multiple Sclerosis Reveals Associated Variants in STAT3 Gene
Jakkula E, Leppä V, Sulonen AM, Varilo T, Kallio S, Kemppinen A, Purcell S, Koivisto K, Tienari P, Sumelahti ML, Elovaara I, Pirttilä T, Reunanen M, Aromaa A, Oturai AB, Søndergaard HB, Harbo HF, Mero IL, Gabriel SB, Mirel DB, Hauser SL, Kappos L, Polman C, De Jager PL, Hafler DA, Daly MJ, Palotie A, Saarela J, Peltonen L. Genome-wide Association Study in a High-Risk Isolate for Multiple Sclerosis Reveals Associated Variants in STAT3 Gene. American Journal Of Human Genetics 2010, 86: 285-291. PMID: 20159113, PMCID: PMC2820168, DOI: 10.1016/j.ajhg.2010.01.017.Peer-Reviewed Original ResearchConceptsSTAT3 geneGenome-wide association studiesRare risk allelesComplex traitsRisk lociRisk allelesAssociated variantsAssociation studiesRecent GWASInternal isolateLociCommon variantsGenetic riskGenesAllelesCritical roleSTAT3Small odds ratiosHeterogeneous populationVariantsGWASIsolatesProtective haplotypeTraitsSNPs
2003
Genetic analysis of multiple sclerosis
Walsh EC, Guschwan-McMahon S, Daly MJ, Hafler DA, Rioux JD. Genetic analysis of multiple sclerosis. Journal Of Autoimmunity 2003, 21: 111-116. PMID: 12935779, DOI: 10.1016/s0896-8411(03)00094-5.Peer-Reviewed Original ResearchConceptsComplementary genetic approachesComplex diseasesHuman genomeGenetic variationGenetic approachesSuch lociGenetic analysisSignificant genetic contributionGenetic variantsGenetic contributionAdditional statistical powerRecent important advancesGenetic causeModest effectLociMeta-analytical approachCTLA-4 variantsGenomeGenetic riskVariantsImportant advancesStatistical powerFuture studiesMS resultsAdvances