2016
Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice
Mahoney C, Feliciano DM, Bordey A, Hartman NW. Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice. Neuroscience Letters 2016, 614: 112-118. PMID: 26812181, DOI: 10.1016/j.neulet.2015.12.042.Peer-Reviewed Original ResearchConceptsNeural stem cellsSubventricular zoneNeonatal subventricular zoneWeek old miceTuberous sclerosis complexStem cellsNewborn neuroblastsYoung miceOld miceProgressive lossYoung adultsRapamycin complex 1Mechanistic targetRecent evidenceProliferative cellsMiceHyperactive mTORC1Terminal differentiationCellsMTORC1 activationProliferationActivationMTORC1NeurogenesisHyperactivity
2015
The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell
Platel JC, Bordey A. The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience 2015, 323: 20-28. PMID: 26546469, PMCID: PMC4821790, DOI: 10.1016/j.neuroscience.2015.10.053.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsAstrocytesBrainGlutamic AcidHumansNeural Stem CellsNeurogenesisNeuronsStem Cell NicheConceptsVentricular-subventricular zoneNeural progenitor cellsPro-neurogenic roleHippocampal dentate gyrusNeural stem cellsSubgranular zoneNewborn neuronsNeurogenic propertiesDentate gyrusNew neuronsLateral ventricleAdult brainMature astrocytesTranscription factor expressionNeurogenic fateNeurophysiological characteristicsFactor expressionAstrocytesBlood vesselsProgenitor cellsMetabolic couplingSurvival cuesNeuronsStem cellsCellsNoncanonical Sites of Adult Neurogenesis in the Mammalian Brain
Feliciano DM, Bordey A, Bonfanti L. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harbor Perspectives In Biology 2015, 7: a018846. PMID: 26384869, PMCID: PMC4588058, DOI: 10.1101/cshperspect.a018846.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2013
Rheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-Sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons
Lafourcade CA, Lin TV, Feliciano DM, Zhang L, Hsieh LS, Bordey A. Rheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-Sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons. Journal Of Neuroscience 2013, 33: 2419-2431. PMID: 23392671, PMCID: PMC3711634, DOI: 10.1523/jneurosci.1840-12.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCell DifferentiationCell EnlargementCell Line, TumorCell MovementCerebral VentriclesDendritesElectroporationFemaleHypertrophyMaleMiceMonomeric GTP-Binding ProteinsNeural Stem CellsNeurogenesisNeuronsNeuropeptidesOlfactory BulbRas Homolog Enriched in Brain ProteinSirolimusStem CellsTOR Serine-Threonine KinasesConceptsNeural progenitor cellsWild-type miceOlfactory bulbMTOR activitySynaptic inputsEctopic neuronal differentiationSubventricular zone neural progenitor cellsActive ras homologNeuronal differentiationGABAergic synaptic inputsTsc1 mutant miceSubventricular zone progenitorsDendritic complexityNewborn neuronsTuberous sclerosisOlig2 cellsHyperactive mTORHeterozygote miceCircuit formationAction potentialsNeuronal morphologyNewborn cellsMutant miceEctopic cellsMammalian target
2012
Newborn cortical neurons: only for neonates?
Feliciano DM, Bordey A. Newborn cortical neurons: only for neonates? Trends In Neurosciences 2012, 36: 51-61. PMID: 23062965, PMCID: PMC3534801, DOI: 10.1016/j.tins.2012.09.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsTransient mGlu5R inhibition enhances the survival of granule cell precursors in the neonatal cerebellum
Kubera C, Hernandez AL, Heng V, Bordey A. Transient mGlu5R inhibition enhances the survival of granule cell precursors in the neonatal cerebellum. Neuroscience 2012, 219: 271-279. PMID: 22677205, PMCID: PMC3402690, DOI: 10.1016/j.neuroscience.2012.05.064.Peer-Reviewed Original ResearchConceptsExternal germinal layerGranule cell precursorsGranule cellsS-phase marker bromodeoxyuridineMetabotropic glutamate receptor 5Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainingTransferase dUTP nick end labeling stainingCell precursorsDUTP nick end labeling stainingNick end labeling stainingGlutamate receptor 5Postnatal day 2Proliferative granule cell precursorsEnd labeling stainingCerebellar granule cellsAcute slicesAbundant neuronsBrdU injectionLabeling stainingVivo treatmentReceptor 5Day 2Vivo injectionSpecific receptorsClonal expansionmiR-132 Enhances Dendritic Morphogenesis, Spine Density, Synaptic Integration, and Survival of Newborn Olfactory Bulb Neurons
Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, Teng ZQ, Zhao X, Fulga TA, Van Vactor D, Bordey A. miR-132 Enhances Dendritic Morphogenesis, Spine Density, Synaptic Integration, and Survival of Newborn Olfactory Bulb Neurons. PLOS ONE 2012, 7: e38174. PMID: 22693596, PMCID: PMC3364964, DOI: 10.1371/journal.pone.0038174.Peer-Reviewed Original ResearchConceptsOlfactory bulb neuronsSynaptic integrationMiR-132Bulb neuronsSpine densityFrequency of GABAergicGlutamatergic synaptic inputsSubventricular zone neurogenesisMiR-132 overexpressionMiR-132 expressionMicroRNA miR-132Neonatal SVZTransplanted neuronsDendritic complexityNewborn neuronsNeuronal survivalPostnatal neurogenesisSynaptic inputsTransplant therapyDendritic morphogenesisNeuronsVivo electroporationSurvivalSignificant increasePlasticity program
2011
Postnatal neurogenesis generates heterotopias, olfactory micronodules and cortical infiltration following single-cell Tsc1 deletion
Feliciano DM, Quon JL, Su T, Taylor MM, Bordey A. Postnatal neurogenesis generates heterotopias, olfactory micronodules and cortical infiltration following single-cell Tsc1 deletion. Human Molecular Genetics 2011, 21: 799-810. PMID: 22068588, PMCID: PMC3263992, DOI: 10.1093/hmg/ddr511.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCell MovementCerebral CortexDendritesElectroporationFemaleGene DeletionMaleMiceMice, TransgenicNeurogenesisNeurogliaNeuronsOlfactory BulbPeriventricular Nodular HeterotopiaSingle-Cell AnalysisTOR Serine-Threonine KinasesTuberous SclerosisTuberous Sclerosis Complex 1 ProteinTumor Suppressor ProteinsConceptsTuberous sclerosis complexSubventricular zoneBrain lesionsPostnatal subventricular zoneForebrain structuresTsc1 deletionHuman subventricular zoneCortical infiltrationNeurological symptomsNeuropsychiatric symptomsNon-invasive imagingOlfactory lesionsPostnatal neurogenesisTSC patientsPersistent infiltrationTransgenic miceAbnormal circuitsStructural abnormalitiesDendritic treeNeuronal precursorsLesionsEmbryonic neurogenesisNeurogenesisNeuronsMicronodulesAdult‐born neuron development is controlled by GABAA receptor subtypes (Commentary on Duveau et al.)
Bordey A. Adult‐born neuron development is controlled by GABAA receptor subtypes (Commentary on Duveau et al.). European Journal Of Neuroscience 2011, 34: 361-361. PMID: 21801241, DOI: 10.1111/j.1460-9568.2011.07807.x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsNeurotransmitters couple brain activity to subventricular zone neurogenesis
Young SZ, Taylor MM, Bordey A. Neurotransmitters couple brain activity to subventricular zone neurogenesis. European Journal Of Neuroscience 2011, 33: 1123-1132. PMID: 21395856, PMCID: PMC3075963, DOI: 10.1111/j.1460-9568.2011.07611.x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSVZ cell proliferationSubventricular zoneHippocampal subgranular zoneMultiple neurotransmitter systemsSubventricular zone neurogenesisCell proliferationSpecific brain regionsSVZ proliferationSubgranular zoneAdult neurogenesisΓ-aminobutyric acidDentate gyrusLateral ventricleNeurotransmitter systemsDrug treatmentNeuronal projectionsPrivileged microenvironmentAlzheimer's diseaseBrain regionsNeurogenesisCell therapyDiseaseBrain activityProliferationSeizures
2010
Function of NMDA receptors activated by astrocytic glutamate on postnatal neurogenesis
Platel JC, Bordey A. Function of NMDA receptors activated by astrocytic glutamate on postnatal neurogenesis. Médecine/sciences 2010, 26: 675-677. PMID: 20819695, DOI: 10.1051/medsci/2010268-9675.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMore neurons for respiratory adaptation: Is neurogenesis at work?
Bordey A. More neurons for respiratory adaptation: Is neurogenesis at work? Respiratory Physiology & Neurobiology 2010, 173: 118-119. PMID: 20708724, DOI: 10.1016/j.resp.2010.07.012.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsProstaglandin E2 induces glutamate release from subventricular zone astrocytes.
Dave KA, Platel JC, Huang F, Tian D, Stamboulian-Platel S, Bordey A. Prostaglandin E2 induces glutamate release from subventricular zone astrocytes. Neuron Glia Biology 2010, 6: 201-7. PMID: 21211110, DOI: 10.1017/s1740925x10000244.Peer-Reviewed Original ResearchConceptsAmbient glutamate levelsProstaglandin E2Subventricular zoneGlutamate releaseAstrocyte-like cellsGlutamate levelsGramicidin-perforated patch-clamp techniquesIntracellular Ca2Application of PGE2Aspartate receptor channelsPatch-clamp techniqueLateral ventricleSVZ cellsPGE2 releaseChoroid plexusMature astrocytesNeuroblast survivalEnzyme immunoassayReceptor channelsAstrocytesE2Ca2CellsReleaseLesser extentAstroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates
Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, Vaccarino F. Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Molecular And Cellular Neuroscience 2010, 44: 362-373. PMID: 20470892, PMCID: PMC2900521, DOI: 10.1016/j.mcn.2010.05.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesBasic Helix-Loop-Helix Transcription FactorsBeta-GalactosidaseCell LineageCerebellumGenes, ReporterGlial Fibrillary Acidic ProteinGreen Fluorescent ProteinsIntegrasesMiceMice, Inbred C57BLMice, TransgenicNeurogenesisNeuronsPromoter Regions, GeneticStem CellsTime FactorsConceptsExternal granule cell layerGranule cell precursorsInternal granule cell layerGranule cell layerGranule cellsRhombic lipAstroglial cellsProtein expression profilesGlial fibrillary acidic protein promoterCerebellar granule cell precursorsHuman glial fibrillary acidic protein promoterEmbryonic rhombic lipInducible Cre recombinaseNeuronal progenitor cellsReporter proteinFirst postnatal weekNeural stem cell markersLate embryogenesisCellular plasticityImmature granule cellsEarly postnatal developmentCell layerReporter geneCerebellar granule neuronsStem cell markersNMDA Receptors Activated by Subventricular Zone Astrocytic Glutamate Are Critical for Neuroblast Survival Prior to Entering a Synaptic Network
Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A. NMDA Receptors Activated by Subventricular Zone Astrocytic Glutamate Are Critical for Neuroblast Survival Prior to Entering a Synaptic Network. Neuron 2010, 65: 859-872. PMID: 20346761, PMCID: PMC2861893, DOI: 10.1016/j.neuron.2010.03.009.Peer-Reviewed Original ResearchConceptsAdult-born neuronsNMDA receptorsNMDAR activitySynaptic networksNeuroblast survivalGlutamate release machineryAstrocyte-like cellsLoss of neuroblastsNeonatal electroporationSpecialized astrocytesAstrocytic glutamateOlfactory bulbVesicular releaseRelease machineryReceptorsNeuroblastsNeuronsIntercellular mechanismsSurvivalGlutamateNeuroblast apoptosisAstrocytesNeurogenesisNeurotransmittersSVZNeurotransmitter signaling in postnatal neurogenesis: The first leg
Platel JC, Stamboulian S, Nguyen I, Bordey A. Neurotransmitter signaling in postnatal neurogenesis: The first leg. Brain Research Reviews 2010, 63: 60-71. PMID: 20188124, PMCID: PMC2862802, DOI: 10.1016/j.brainresrev.2010.02.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsFate determinationSonic hedgehogNeurotransmitter signalingDifferent cell typesSubventricular zoneMultitude of receptorsMaster regulatorGenetic signaturesMosaic natureGamma-aminobutyric acidMicroenvironmental signalsCell typesIntracellular pathwaysAstrocyte-like cellsFunction of neurotransmittersHedgehogSignalingNeurogenesisNeurogenic zonesAdult brainPostnatal neurogenesisPeripheral organsNeurotransmitter functionSynaptic integrationGenesA symphony of signals conducts early and late stages of adult neurogenesis
Pathania M, Yan LD, Bordey A. A symphony of signals conducts early and late stages of adult neurogenesis. Neuropharmacology 2010, 58: 865-876. PMID: 20097213, PMCID: PMC2850602, DOI: 10.1016/j.neuropharm.2010.01.010.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAdult Stem CellsAnimalsExtracellular SpaceHumansIntracellular SpaceNeurogenesisNeuronsNeurotransmitter AgentsConceptsPoint of regulationCentral nervous systemMammalian central nervous systemCell-intrinsic mechanismsDifferent regulatory factorsFate commitmentNiche microenvironmentEarly neurogenesisIntracellular machineryRegulatory factorsIsolated nichesLate neurogenesisExtrinsic factorsNeurogenesisMature networksAdult neurogenesisDendritic developmentSynaptic integrationIntrinsic factorsNervous systemLater stagesNicheMachineryNeurotransmittersNetwork activity