2018
Pre-implantation factor promotes neuroprotection by modulating long non-coding RNA H19 of the neuronal stem cells
Spinelli M, Ornaghi S, Schoeberlein A, Bordey A, Barnea E, Paidas M, Surbek D, Mueller M. Pre-implantation factor promotes neuroprotection by modulating long non-coding RNA H19 of the neuronal stem cells. Geburtshilfe Und Frauenheilkunde 2018, 78: 231-231. DOI: 10.1055/s-0038-1671458.Peer-Reviewed Original Research
2016
Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice
Mahoney C, Feliciano DM, Bordey A, Hartman NW. Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice. Neuroscience Letters 2016, 614: 112-118. PMID: 26812181, DOI: 10.1016/j.neulet.2015.12.042.Peer-Reviewed Original ResearchConceptsNeural stem cellsSubventricular zoneNeonatal subventricular zoneWeek old miceTuberous sclerosis complexStem cellsNewborn neuroblastsYoung miceOld miceProgressive lossYoung adultsRapamycin complex 1Mechanistic targetRecent evidenceProliferative cellsMiceHyperactive mTORC1Terminal differentiationCellsMTORC1 activationProliferationActivationMTORC1NeurogenesisHyperactivity
2015
The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell
Platel JC, Bordey A. The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience 2015, 323: 20-28. PMID: 26546469, PMCID: PMC4821790, DOI: 10.1016/j.neuroscience.2015.10.053.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsVentricular-subventricular zoneNeural progenitor cellsPro-neurogenic roleHippocampal dentate gyrusNeural stem cellsSubgranular zoneNewborn neuronsNeurogenic propertiesDentate gyrusNew neuronsLateral ventricleAdult brainMature astrocytesTranscription factor expressionNeurogenic fateNeurophysiological characteristicsFactor expressionAstrocytesBlood vesselsProgenitor cellsMetabolic couplingSurvival cuesNeuronsStem cellsCells
2014
Embryonic Cerebrospinal Fluid Nanovesicles Carry Evolutionarily Conserved Molecules and Promote Neural Stem Cell Amplification
Feliciano DM, Zhang S, Nasrallah CM, Lisgo SN, Bordey A. Embryonic Cerebrospinal Fluid Nanovesicles Carry Evolutionarily Conserved Molecules and Promote Neural Stem Cell Amplification. PLOS ONE 2014, 9: e88810. PMID: 24533152, PMCID: PMC3923048, DOI: 10.1371/journal.pone.0088810.Peer-Reviewed Original ResearchConceptsNeural stem cellsRapamycin complex 1 (mTORC1) pathwayIntracellular pathwaysStem cell amplificationInsulin-like growth factorCoordinated regulationGenetic programMicroRNA componentsExosome NanovesiclesEmbryonic CSFCell amplificationStem cellsENSCsPathwayCoordinated transferGrowth factorHuman embryosBrain developmentNanovesiclesMixed cultureAmplificationMoleculesEmbryosProteinExosomes
2013
mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal In Vivo
Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A. mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal In Vivo. Cell Reports 2013, 5: 433-444. PMID: 24139800, DOI: 10.1016/j.celrep.2013.09.017.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCarrier ProteinsCell Cycle ProteinsCell DifferentiationCells, CulturedEukaryotic Initiation FactorsMechanistic Target of Rapamycin Complex 1MiceMonomeric GTP-Binding ProteinsMultiprotein ComplexesNeural Stem CellsNeuropeptidesPhosphoproteinsPhosphorylationRas Homolog Enriched in Brain ProteinRibosomal Protein S6 Kinases, 90-kDaRNA InterferenceRNA, Small InterferingSirolimusTOR Serine-Threonine KinasesConceptsCap-dependent translationNeural stem cellsNSC differentiationStem Cell Self-RenewalTranslational repressor 4E-BP1P70 S6 kinase 1Neural Stem Cell Self-RenewalCell Self-RenewalRapamycin complex 1Neonatal neural stem cellsS6 kinase 1Downstream regulatory mechanismsLineage expansionSelf-RenewalRegulatory mechanismsKinase 1Kinase 1/2Constitutive activationMammalian targetCell growthStem cellsBrain sizeDifferentiationKnockdownNeuron productionNeonatal subventricular zone electroporation.
Feliciano DM, Lafourcade CA, Bordey A. Neonatal subventricular zone electroporation. Journal Of Visualized Experiments 2013 PMID: 23426329, PMCID: PMC3601042, DOI: 10.3791/50197.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsNeural stem cellsGenetic engineeringEmbryonic neural stem cellsWhole animal levelMultiple cell typesSVZ neural stem cellsMammalian systemsMolecular pathwaysCell typesStem cellsTime-effective alternativeRodent forebrainAnimal levelElectroporationEpendymal cellsInvertebratesCellsCortical developmentRobust labelingProgenyCentral nervous system disordersNervous system disordersDifferentiationPathwayVast majorityHypoxia-inducible factor 1a is a Tsc1-regulated survival factor in newborn neurons in tuberous sclerosis complex
Feliciano DM, Zhang S, Quon JL, Bordey A. Hypoxia-inducible factor 1a is a Tsc1-regulated survival factor in newborn neurons in tuberous sclerosis complex. Human Molecular Genetics 2013, 22: 1725-1734. PMID: 23349360, PMCID: PMC3613161, DOI: 10.1093/hmg/ddt018.Peer-Reviewed Original ResearchConceptsHypoxia-inducible factor 1aTuberous sclerosis complexShort hairpin RNANewborn neuronsFactor 1ASubventricular zoneSVZ stem cellsNewborn neuron survivalNeurogenic subventricular zoneSingle-cell electroporationTranscriptional activityShRNA expressionHairpin RNAMammalian targetMolecular determinantsNovel microenvironmentNeuron deathNeuron survivalOlfactory lesionsNeonatal miceBrain lesionsStem cellsMouse modelNeuron productionSurvival advantage
2012
Newborn cortical neurons: only for neonates?
Feliciano DM, Bordey A. Newborn cortical neurons: only for neonates? Trends In Neurosciences 2012, 36: 51-61. PMID: 23062965, PMCID: PMC3534801, DOI: 10.1016/j.tins.2012.09.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2011
Control of Adult-Born Neuron Production by Converging GABA and Glutamate Signals
Platel J, Bordey A. Control of Adult-Born Neuron Production by Converging GABA and Glutamate Signals. 2011, 395-406. DOI: 10.1007/978-4-431-53933-9_17.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsSteady-state levelsStem cellsNovel epigenetic controlCell-cell signalingNeuron productionStem cell proliferationEpigenetic controlNeuroblast poolProliferative cuesNeuroblast numbersNeural stem cellsMosaic expressionNeural progenitorsHigh-affinity uptake systemUptake systemAdult-born neuronsHigh turnover rateCell proliferationNeuroblastsControl of adultsNeurotransmitter releaseNegative feedback controlNeuroblast productionImmature neuronsAdult neurogenesis
2009
GABA’s Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches
Young SZ, Bordey A. GABA’s Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches. Physiology 2009, 24: 171-185. PMID: 19509127, PMCID: PMC2931807, DOI: 10.1152/physiol.00002.2009.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsStem cellsGamma-amino butyric acidProliferation of pluripotentAdult stem cellsNeural stem cellsAdult tissuesCancer cell proliferationRegulation of secretionTumor stem cellsTumor cellsCell proliferationAdult neuralProliferationCellsGABA controlPeripheral organsGABAergic signalingPeripheral nichesNervous systemMitotic activityPluripotentButyric acidNicheSignalingRegulation
2008
The astrocyte odyssey
Wang DD, Bordey A. The astrocyte odyssey. Progress In Neurobiology 2008, 86: 342-367. PMID: 18948166, PMCID: PMC2613184, DOI: 10.1016/j.pneurobio.2008.09.015.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAdult neurogenic zonesFunction of astrocytesAstrocytic calcium wavesPopulation of astrocytesDifferent molecular identitiesNeural stem cellsGlutamate releaseNeurogenic zonesNeurogenic nicheNeuronal activityNervous systemStem cell characteristicsAstrocytesNeuronsCalcium wavesVivo roleSupport cellsStem cellsEqual numberCellsDiverse populationsMolecular identityCell characteristicsPioneer discoveriesCentral playerControl of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain
Platel J, Dave KA, Bordey A. Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. The Journal Of Physiology 2008, 586: 3739-3743. PMID: 18467361, PMCID: PMC2538924, DOI: 10.1113/jphysiol.2008.155325.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsNeuroblast productionGlutamate receptorsStem cellsSteady-state levelsAdult-born neuronsNovel epigenetic controlNeural stem cellsImmature neuronsAdult neurogenesisNeurotransmitter GABAOlfactory bulbPostnatal forebrainNeuron productionNew steady-state levelStem cell proliferationHigh-affinity uptake systemCalcium elevationNeurotransmitter releaseEpigenetic controlExtracellular concentrationGlutamate signalsGABANegative feedback controlNeuroblast numbersIntercellular signaling
2006
Nonsynaptic GABAergic Communication and Postnatal Neurogenesis
Liu X, Bolteus A, Bordey A. Nonsynaptic GABAergic Communication and Postnatal Neurogenesis. Contemporary Neuroscience 2006, 95-104. DOI: 10.1007/978-1-59745-021-8_9.ChaptersFunction of GABASubventricular zonePostnatal neurogenesisNeuronal precursorsNeuron-glial networksSVZ stem cellsStem cellsNeural stem cellsLocal GABAergicNonsynaptic communicationGABAergic systemSynaptic contactsΓ-aminobutyric acidSVZ cellsSVZ precursorsSubependymal zoneGABANeurogenesisCell proliferationCellsEmbryonic cell proliferationGABAergicBrain
2005
Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors
Liu X, Wang Q, Haydar TF, Bordey A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nature Neuroscience 2005, 8: 1179-1187. PMID: 16116450, PMCID: PMC1380263, DOI: 10.1038/nn1522.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBotulinum ToxinsBromodeoxyuridineCadmiumCell CountCell ProliferationChelating AgentsCyclooxygenase InhibitorsDose-Response Relationship, DrugDose-Response Relationship, RadiationDrug InteractionsEgtazic AcidElectric StimulationEnzyme InhibitorsGABA AntagonistsGamma-Aminobutyric AcidGene Expression RegulationGlial Fibrillary Acidic ProteinGreen Fluorescent ProteinsImmunohistochemistryIn Vitro TechniquesLateral VentriclesMeclofenamic AcidMembrane PotentialsMiceMice, TransgenicNeuronsNickelPatch-Clamp TechniquesPotassiumSodium Channel BlockersSpider VenomsStem CellsTetrodotoxinConceptsPostnatal subventricular zoneGFAP-expressing cellsSubventricular zoneCell cycleGABAA receptorsStem cellsNeuroblastsProgenitorsGlial fibrillary acidic proteinSVZ cellsGABAA receptor currentsGABAA receptor activationFibrillary acidic proteinReceptor activationCellsProliferationGABA releaseMouse slicesLocal cuesAcidic proteinReceptor currentsSpontaneous depolarizationsGFAPGABAReceptorsThe Postnatal Subventricular Zone: A Source of New Cells in This Old Brain
Bordey A. The Postnatal Subventricular Zone: A Source of New Cells in This Old Brain. Nepal Journal Of Neuroscience 2005, 2: 12-23. DOI: 10.3126/njn.v2i1.19977.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsSubventricular zoneNon-synaptic communicationLarge germinal centersHigher cognitive centersRostral migratory streamPostnatal subventricular zoneBrain injuryPersistent neurogenesisLateral ventricleOlfactory bulbAdult brainGerminal centersOld brainMigratory streamCognitive centersNeurogenesisLateral wallStem cellsSVZBrainFuture strategiesNeuroblastsNepal JournalIntercellular signalingCells