2024
A Hybrid Transformer-Convolutional Neural Network for Segmentation of Intracerebral Hemorrhage and Perihematomal Edema on Non-Contrast Head Computed Tomography (CT) with Uncertainty Quantification to Improve Confidence
Tran A, Desser D, Zeevi T, Abou Karam G, Dierksen F, Dell’Orco A, Kniep H, Hanning U, Fiehler J, Zietz J, Sanelli P, Malhotra A, Duncan J, Aneja S, Falcone G, Qureshi A, Sheth K, Nawabi J, Payabvash S. A Hybrid Transformer-Convolutional Neural Network for Segmentation of Intracerebral Hemorrhage and Perihematomal Edema on Non-Contrast Head Computed Tomography (CT) with Uncertainty Quantification to Improve Confidence. Bioengineering 2024, 11: 1274. DOI: 10.3390/bioengineering11121274.Peer-Reviewed Original ResearchNon-contrast head computed tomographyPerihematomal edemaHead computed tomographyIntracerebral hemorrhageComputed tomographyVolume similarityUniversity Medical Center Hamburg-EppendorfSecondary brain injuryYale cohortInfratentorial locationMulticentre trialCT scanTreatment planningNon-contrastHamburg-EppendorfImaging markersHemorrhagic strokeHemorrhageEdemaCohortBrain injuryDice coefficientClinical Applications of Dual‐Energy Computed Tomography for Acute Ischemic Stroke
Chen H, Bodanapally U, Colasurdo M, Malhotra A, Gandhi D. Clinical Applications of Dual‐Energy Computed Tomography for Acute Ischemic Stroke. Stroke Vascular And Interventional Neurology 2024, 4 DOI: 10.1161/svin.123.001193.Peer-Reviewed Educational MaterialsDual-energy computed tomographyAcute ischemic strokePostinterventional managementIschemic strokeDual-energyClinical applicationPredicting hemorrhagic transformationContext of acute ischemic strokeDiagnostic challengePatient selectionEarly cerebral ischemiaHemorrhagic transformationRecanalization therapyComputed tomographyClinical evidenceDiagnostic accuracyTreatment strategiesAcute stroke triageVascular lesionsNeurological disabilityCerebral ischemiaDiagnostic imagingTomographyStroke triageNarrative reviewUncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan
Tran A, Zeevi T, Haider S, Abou Karam G, Berson E, Tharmaseelan H, Qureshi A, Sanelli P, Werring D, Malhotra A, Petersen N, de Havenon A, Falcone G, Sheth K, Payabvash S. Uncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan. Npj Digital Medicine 2024, 7: 26. PMID: 38321131, PMCID: PMC10847454, DOI: 10.1038/s41746-024-01007-w.Peer-Reviewed Original ResearchDeep learning modelsHematoma expansionIntracerebral hemorrhageICH expansionComputed tomographyNon-contrast head CTNon-contrast head computed tomographyHigh risk of HEHead computed tomographyHigh-confidence predictionsRisk of HENon-contrast headReceiver operating characteristic areaModifiable risk factorsMonte Carlo dropoutOperating characteristics areaPotential treatment targetHead CTVisual markersIdentified patientsAutomated deep learning modelDataset of patientsRisk factorsHigh riskPatients
2019
A comparison of benign positional vertigo and stroke patients presenting to the emergency department with vertigo or dizziness
Hanna J, Malhotra A, Brauer PR, Luryi A, Michaelides E. A comparison of benign positional vertigo and stroke patients presenting to the emergency department with vertigo or dizziness. American Journal Of Otolaryngology 2019, 40: 102263. PMID: 31358317, DOI: 10.1016/j.amjoto.2019.07.007.Peer-Reviewed Original ResearchConceptsBenign paroxysmal positional vertigoStroke risk factorsCT/CTAEmergency departmentBPPV patientsNeurologic symptomsStroke patientsRisk factorsPositional vertigoCT headExam findingsNeurologic exam findingsPosterior circulation strokeProfile of patientsBenign positional vertigoParoxysmal positional vertigoCommon imaging modalityAcute strokeNeurologic examInitial imagingMRI brainDischarge diagnosisComputed tomographyPatientsVertigo
2017
Cost-effectiveness of Magnetic Resonance Imaging in Cervical Spine Clearance of Neurologically Intact Patients With Blunt Trauma
Wu X, Malhotra A, Geng B, Liu R, Abbed K, Forman HP, Sanelli P. Cost-effectiveness of Magnetic Resonance Imaging in Cervical Spine Clearance of Neurologically Intact Patients With Blunt Trauma. Annals Of Emergency Medicine 2017, 71: 64-73. PMID: 28826754, DOI: 10.1016/j.annemergmed.2017.07.006.Peer-Reviewed Original ResearchMeSH KeywordsAdultAftercareCervical VertebraeCost-Benefit AnalysisDecision Support TechniquesHealth Care CostsHumansMagnetic Resonance ImagingMarkov ChainsModels, EconomicQuality-Adjusted Life YearsSensitivity and SpecificitySpinal InjuriesTomography, X-Ray ComputedUnited StatesWounds, NonpenetratingConceptsMagnetic resonance imagingCervical computed tomographyBlunt traumaIntact patientsUnstable injuriesCT resultsResonance imagingCost of MRICervical spine clearanceIncidence of patientsPermanent neurologic deficitsHealth benefitsNegative predictive valueProbabilistic sensitivity analysesInitial CT resultsCervical clearanceSpine clearanceNeurologic deficitsHard collarCord injuryPatient populationAlert patientsComputed tomographyPredictive valuePatients