Wenxiang Cao, PhD
Research ScientistCards
About
Research
Publications
2025
BPS2025 - Molecular mechanism of actin filament stiffening by cations
Xu X, Cao W, Sindelar C, De La Cruz E, Volkmann N, Hanein D. BPS2025 - Molecular mechanism of actin filament stiffening by cations. Biophysical Journal 2025, 124: 46a. DOI: 10.1016/j.bpj.2024.11.321.Peer-Reviewed Original ResearchBPS2025 - Development of a novel method for in situ binding affinity measurements using cryo-electron microscopy
Rochon K, Cao W, Gray R, Oltrogge L, Aguilar V, Savage D, De La Cruz E, Metskas L. BPS2025 - Development of a novel method for in situ binding affinity measurements using cryo-electron microscopy. Biophysical Journal 2025, 124: 54a. DOI: 10.1016/j.bpj.2024.11.358.Peer-Reviewed Original ResearchBPS2025 - Molecular mechanism of actin filament stiffening by cations
Xu X, Cao W, Sindelar C, De La Cruz E, Volkmann N, Hanein D. BPS2025 - Molecular mechanism of actin filament stiffening by cations. Biophysical Journal 2025, 124: 471a-472a. DOI: 10.1016/j.bpj.2024.11.2491.Peer-Reviewed Original Research
2024
Bending stiffness of Toxoplasma gondii actin filaments
Cao W, Sladewski T, Heaslip A, De La Cruz E. Bending stiffness of Toxoplasma gondii actin filaments. Journal Of Biological Chemistry 2024, 301: 108101. PMID: 39706262, PMCID: PMC11786770, DOI: 10.1016/j.jbc.2024.108101.Peer-Reviewed Original ResearchConceptsActin filamentsD-loopMechanical properties of actin filamentsFilament subunitsSkeletal muscle actin filamentsProperties of actin filamentsSkeletal muscle actinMuscle actin filamentsFilament length distributionApicomplexan parasite Toxoplasma gondiiIntersubunit salt bridgesOrganelle inheritancePointed-endSubunit interactionsNeighboring subunitUnique assembly propertiesSalt bridgesSubunitFunctional consequencesSubunit dissociationVisible densityActinSubunit incorporationParasite Toxoplasma gondiiFilamentsHigh-resolution yeast actin structures indicate the molecular mechanism of actin filament stiffening by cations
Xu X, Cao W, Swift M, Pandit N, Huehn A, Sindelar C, De La Cruz E, Hanein D, Volkmann N. High-resolution yeast actin structures indicate the molecular mechanism of actin filament stiffening by cations. Communications Chemistry 2024, 7: 164. PMID: 39079963, PMCID: PMC11289367, DOI: 10.1038/s42004-024-01243-x.Peer-Reviewed Original ResearchActin filamentsVertebrate actinsActin structuresDNase I binding loopActin filament assemblyEukaryotic cell functionStructures of wild-typeNear-atomic resolution structuresPotential binding sitesActin subunitsFilament assemblyRegulatory proteinsDNase IA167ActinAdjacent subunitsRegulatory roleMolecular mechanismsVertebratesWild-typeGlutamic acidCell functionFilamentsSubunitResiduesUsing Cryogenic Electron Tomography (CryoET) to Determine Binding Curves in Bacteria Microcompartments
Rochon K, Gray R, Cao W, Oltrogge L, Savage D, De La Cruz E, Metskas L. Using Cryogenic Electron Tomography (CryoET) to Determine Binding Curves in Bacteria Microcompartments. Microscopy And Microanalysis 2024, 30: ozae044.388. DOI: 10.1093/mam/ozae044.388.Peer-Reviewed Original ResearchQuantitative correlation of ENPP1 pathogenic variants with disease phenotype
Ansh A, Stabach P, Ciccone C, Cao W, De La Cruz E, Sabbagh Y, Carpenter T, Ferreira C, Braddock D. Quantitative correlation of ENPP1 pathogenic variants with disease phenotype. Bone 2024, 186: 117136. PMID: 38806089, PMCID: PMC11227391, DOI: 10.1016/j.bone.2024.117136.Peer-Reviewed Original ResearchEctonucleotide pyrophosphatase/phosphodiesterase 1Pathogenic variantsDisease phenotypeEnzyme velocityCompound heterozygotesEnzyme activityVariable enzyme activityAutosomal dominant phenotypeHigh-throughput assayAutosomal recessive formInnate immune responseENPP1 variantsDamaging variantsENPP1 deficiencyCole diseaseDominant phenotypeAutosomal dominant diseaseCatalytic velocityRecessive formEnzymePhenotypeWT levelsBio-active moleculesClinical phenotypeDominant diseasePublisher Correction: Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex
Chavali S, Chou S, Cao W, Pollard T, De La Cruz E, Sindelar C. Publisher Correction: Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. Nature Communications 2024, 15: 2354. PMID: 38491023, PMCID: PMC10943100, DOI: 10.1038/s41467-024-46804-9.Peer-Reviewed Original ResearchCryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex
Chavali S, Chou S, Cao W, Pollard T, De La Cruz E, Sindelar C. Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. Nature Communications 2024, 15: 2059. PMID: 38448439, PMCID: PMC10918085, DOI: 10.1038/s41467-024-46179-x.Peer-Reviewed Original ResearchConceptsArp2/3 complexActin filamentsCryo-EM structureMother filamentDaughter filamentArp2/3 complex nucleates branched actin filamentsActin filament branchingBranched actin filamentsDissociation of PiADP-PiFilament branchingOrganelle movementADP stateBranch junctionsArp3A-resolutionActinArp2/3ADP-BeFxFilamentsADPPhosphate releaseFilament mechanismArp2OrganellesDistinct functional constraints driving conservation of the cofilin N-terminal regulatory tail
Sexton J, Potchernikov T, Bibeau J, Casanova-SepĂșlveda G, Cao W, Lou H, Boggon T, De La Cruz E, Turk B. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Nature Communications 2024, 15: 1426. PMID: 38365893, PMCID: PMC10873347, DOI: 10.1038/s41467-024-45878-9.Peer-Reviewed Original ResearchConceptsN-terminal regionActin bindingSequence requirementsLIM kinaseAnalysis of individual variantsInactivates cofilinS. cerevisiaeRegulatory tailFamily proteinsActin depolymerizationPhosphorylation sitesKinase recognitionSequence variantsInhibitory phosphorylationCofilinN-terminusIndividual variantsFunctional constraintsActinDisordered sequencesPhosphorylationSequenceBiochemical analysisSequence constraintsKinase
Academic Achievements & Community Involvement
News
Get In Touch
Contacts
Mailing Address
Molecular Biophysics and Biochemistry
266 Whitney Ave. , 335 Bass Building
New Haven, CT 06511
United States