2022
Thermal effects on neurons during stimulation of the brain
Kim T, Kadji H, Whalen A, Ashourvan A, Freeman E, Fried S, Tadigadapa S, Schiff S. Thermal effects on neurons during stimulation of the brain. Journal Of Neural Engineering 2022, 19: 056029. PMID: 36126646, PMCID: PMC9855718, DOI: 10.1088/1741-2552/ac9339.Peer-Reviewed Original ResearchConceptsThermal effectsJoule heatingMagnetic coilsRate dependencyElectrical interactionsSmall thermal effectsTemperature changesDissipation of energyNumerical modelingRange of frequenciesThermal energyMagnetic fieldDC drivingMagnetic inductionElectrical currentStatic magnetic fieldSmall temperature increaseTemperature increaseAccurate modulationCoilEnergy depositionHeatingConductorsTransient effectsElectrode
2018
Chip-scale high Q-factor glassblown microspherical shells for magnetic sensing
Freeman E, Wang C, Sumaria V, Schiff S, Liu Z, Tadigadapa S. Chip-scale high Q-factor glassblown microspherical shells for magnetic sensing. AIP Advances 2018, 8: 065214. PMID: 29938122, PMCID: PMC6002270, DOI: 10.1063/1.5030460.Peer-Reviewed Original ResearchGallery mode resonatorsExternal magnetic fieldUltra-smooth surfaceResonance frequency shiftResonance shiftsPhotoelastic effectMagnetic fieldExperimental limitsMode resonatorsLimit of detectionMagnetic sensingQ-factorFrequency shiftDetection limitShell structureShell resonatorMechanical deformationMagnetometerMagnetic forceResonatorMagnetsHzShellWavelengthLimit
2017
Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field
Freeman E, Harper J, Goel N, Gilbert I, Unguris J, Schiff S, Tadigadapa S. Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field. Smart Materials And Structures 2017, 26: 085038. PMID: 28966478, PMCID: PMC5615411, DOI: 10.1088/1361-665x/aa770b.Peer-Reviewed Original ResearchMagnetoelectric performanceMagnetoelectric coefficientMagnetostriction coefficientDoppler vibrometerOxygen-free environmentRemnant stressNoise floorMagnetic domain alignmentMagnetostrictionElectron microscopyMagnetic domainsUnwanted crystallizationMagnetic fieldRibbonsComprehensive investigationCoefficientPerformance
2016
Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI
Lother S, Schiff S, Neuberger T, Jakob P, Fidler F. Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI. Magnetic Resonance Materials In Physics, Biology And Medicine 2016, 29: 691-698. PMID: 26861046, PMCID: PMC5695548, DOI: 10.1007/s10334-016-0525-8.Peer-Reviewed Original ResearchConceptsCryogen-free systemField mapping measurementsHigh B0 fieldsLow field devicesLow power consumptionSteel platesLight weightMagnetic resonance imaging systemSimple fabricationNumerical optimization algorithmHomogeneous magnetic fieldPower consumptionElectromagnetResonance imaging systemPower useB0 fieldLow-field scannersMagnetic fieldLow-field MRIField strengthHigh homogeneityMedical applicationsField limitationsLarge fieldMagnetsOptimization of Metglas 2605SA1 and PZT-5A Magnetoelectric Laminates for Magnetic Sensing Applications
Freeman E, Harper J, Goel N, Schiff S, Tadigadapa S. Optimization of Metglas 2605SA1 and PZT-5A Magnetoelectric Laminates for Magnetic Sensing Applications. 2010 IEEE Sensors 2016, 2016: 1-3. PMID: 30906488, PMCID: PMC6424960, DOI: 10.1109/icsens.2016.7808845.Peer-Reviewed Original ResearchResidual stress reductionDC electric field biasMagnetoelectric voltage coefficientMechanical couplingDC electric fieldElectric field biasMagnetic sensing applicationsMagnetic field sensitivityPZT-5AOe magnetic fieldResidual stressMagnetoelectric laminateEasy axis alignmentVoltage coefficientKV/C annealElectric fieldMetglasSensing applicationsField biasLaminatesField sensitivityMagnetic domainsMagnetic fieldPiezoelectric