2022
Inhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability
Ghovanloo M, Estacion M, Higerd‐Rusli G, Zhao P, Dib‐Hajj S, Waxman SG. Inhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability. British Journal Of Pharmacology 2022, 179: 4010-4030. PMID: 35297036, DOI: 10.1111/bph.15833.Peer-Reviewed Original ResearchConceptsEffect of cannabigerolDRG neuronsDorsal root ganglion neuron excitabilityVoltage-gated sodium currentDorsal root ganglion neuronsLower CBG concentrationPrimary dorsal root ganglion neuronsAnalgesic drug developmentNon-psychotropic phytocannabinoidMultielectrode array recordingsAction potential modellingInhibition of NaDRG excitabilityGanglion neuronsNeuron excitabilityAnalgesic propertiesCNS neuronsNeuronal hypoexcitabilityCBG concentrationsChannel inhibitorsSodium currentNeuronsFunctional selectivityDrug developmentUnderlying mechanism
2014
Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H
Vasylyev DV, Han C, Zhao P, Dib-Hajj S, Waxman SG. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H. Journal Of Neurophysiology 2014, 111: 1429-1443. PMID: 24401712, DOI: 10.1152/jn.00763.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiophysicsCells, CulturedElectric StimulationErythromelalgiaGanglia, SpinalHEK293 CellsHumansMembrane PotentialsMiceMice, KnockoutModels, BiologicalMutationNAV1.7 Voltage-Gated Sodium ChannelNeural ConductionNeuronsPatch-Clamp TechniquesSodium Channel BlockersTetrodotoxinTransfectionConceptsDRG neuronsMutant Nav1.7 channelsNav1.7 channelsDorsal root ganglion neuronsSodium influxPrimary nociceptive neuronsSmall DRG neuronsNet sodium influxSodium channel Nav1.7Current thresholdMechanistic linkAction potential generationNeuropathic painNociceptive neuronsNociceptor functionGanglion neuronsNociceptor hyperexcitabilityPain phenotypesChannel expressionChannel Nav1.7Subthreshold depolarizationHuman Nav1.7Electrophysiological recordingsDynamic-Clamp AnalysisIdentification of gain
2013
Sodium Channels Contribute to Degeneration of Dorsal Root Ganglion Neurites Induced by Mitochondrial Dysfunction in an In Vitro Model of Axonal Injury
Persson AK, Kim I, Zhao P, Estacion M, Black JA, Waxman SG. Sodium Channels Contribute to Degeneration of Dorsal Root Ganglion Neurites Induced by Mitochondrial Dysfunction in an In Vitro Model of Axonal Injury. Journal Of Neuroscience 2013, 33: 19250-19261. PMID: 24305821, PMCID: PMC6618782, DOI: 10.1523/jneurosci.2148-13.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsAxotomyCell DeathCells, CulturedGanglia, SpinalHumansHydrogen PeroxideImmunohistochemistryMiceMice, TransgenicMicrotubulesMitochondrial DiseasesNerve DegenerationNeuritesOxidantsRotenoneSodium Channel BlockersSodium ChannelsSodium-Calcium ExchangerSodium-Potassium-Exchanging ATPaseTetrodotoxinThioureaUncoupling AgentsConceptsAxonal degenerationNeurite degenerationSodium channelsKB-R7943Mouse peripheral sensory neuronsRotenone-induced mitochondrial dysfunctionOxidative stressMitochondrial dysfunctionPeripheral sensory neuronsDorsal root gangliaPeripheral nervous systemDegeneration of neuritesMitochondrial functionVoltage-gated sodium channelsMultiple neurodegenerative disordersSodium-calcium exchangerImpaired mitochondrial functionInjurious cascadeAxonal injuryActivity blockadeRoot gangliaAxonal neuropathySensory neuronsNCX activityDysfunctional intracellular