2024
Beyond the “spine of hydration”: Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures
Perets E, Konstantinovsky D, Santiago T, Videla P, Tremblay M, Velarde L, Batista V, Hammes-Schiffer S, Yan E. Beyond the “spine of hydration”: Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. The Journal Of Chemical Physics 2024, 161: 095104. PMID: 39230381, PMCID: PMC11377083, DOI: 10.1063/5.0220479.Peer-Reviewed Original ResearchConceptsChiral SFG spectraProbe water moleculeWater moleculesChiral SFG spectroscopyHydration shellSFG spectraMinor grooveSFG spectroscopyHydration shell water moleculesWater structureO-H stretching of waterSum frequency generation spectroscopyShell water moleculesPhosphate backboneN-H stretchingO-H stretchingDNA base pairsDNA minor grooveSpine of hydrationSpectra of DNAN-HVibrational spectroscopyO-HSFG responseSFG signal
2015
Accurate Line Shapes from Sub‑1 cm–1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α‑Pinene at Room Temperature
Mifflin A, Velarde L, Ho J, Psciuk B, Negre C, Ebben C, Upshur M, Lu Z, Strick B, Thomson R, Batista V, Wang H, Geiger F. Accurate Line Shapes from Sub‑1 cm–1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α‑Pinene at Room Temperature. The Journal Of Physical Chemistry A 2015, 119: 1292-1302. PMID: 25647092, DOI: 10.1021/jp510700z.Peer-Reviewed Original ResearchConceptsVibrational spectroscopySum frequency generation vibrational spectroscopyGeneration vibrational spectroscopySum frequency generation spectraMolecular dynamics calculationsΑ-pineneVibrational energy relaxationSFG spectroscopyRoom temperaturePhase-resolved spectraAccurate line shapesVibrational spectraFourier transformMolecular surfaceHigh spectral resolutionSpectroscopyRaman spectraDynamics calculationsSame moleculeCommon terpenesNew spectroscopyVibrational coherenceEnergy relaxationGeneration spectraSpectral lines
2014
Excited-State Intramolecular Hydrogen Transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) Characterized by Ultrafast Electronic and Vibrational Spectroscopy and Computational Modeling
Mohammed O, Xiao D, Batista V, Nibbering E. Excited-State Intramolecular Hydrogen Transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) Characterized by Ultrafast Electronic and Vibrational Spectroscopy and Computational Modeling. The Journal Of Physical Chemistry A 2014, 118: 3090-3099. PMID: 24684387, DOI: 10.1021/jp501612f.Peer-Reviewed Original ResearchElectronic excited statesExcited-state intramolecular hydrogen transferExcited statesElectronic excited-state dynamicsS1 electronic excited stateTriplet statePump-probe dataExcited state populationExcited-state dynamicsSinglet state decayPs time scaleVibrational energy redistributionGround state recoverySubnanosecond time scaleTime scalesVibrational spectroscopyExcited singlet states decayUltrafast electronicsFirst triplet stateUV/Population transferEquilibrium population dynamicsVibrational coolingState decayRelaxation dynamics