2013
Study of an S = 1 Ni II pincer electrocatalyst precursor for aqueous hydrogen production based on paramagnetic 1 H NMR
Luca OR, Konezny SJ, Paulson EK, Habib F, Luthy KM, Murugesu M, Crabtree RH, Batista VS. Study of an S = 1 Ni II pincer electrocatalyst precursor for aqueous hydrogen production based on paramagnetic 1 H NMR. Dalton Transactions 2013, 42: 8802-8807. PMID: 23640289, DOI: 10.1039/c3dt50528f.Peer-Reviewed Original ResearchChemical shiftsTridentate NNN ligandMetal complexesNNN ligandCatalytic applicationsLow overpotentialH NMRAppropriate ligandDFT methodologyAnalogue complexesT1 relaxation rateUnambiguous assignmentHydrogen productionProton environmentNMRH2 productionComplexesLigandsMagnetic susceptibilityRelaxation rateElectrocatalystsOverpotentialReactivityTemperature dependencePrecursorsCHAPTER 1
Konezny S, Batista V. CHAPTER 1. Energy And Environment Series 2013, 1-36. DOI: 10.1039/9781849735445-00001.Peer-Reviewed Original ResearchMolecular adsorbatesEarth abundant transition metal complexesTransition metal complexesInverse molecular designSolar cellsNew photocatalytic materialsSolar light absorptionMetal complexesRedox propertiesSolar cell componentsChemical fuelsMolecular designPhotocatalytic materialsSolar cell assemblyNanoporous materialsRedox potentialFirst-principles calculationsCharge transportCurrent-voltage characteristicsLight absorptionPrinciples calculationsSemiconductor materialsAdsorbatesFundamental insightsMechanistic characterization
2011
Energy Research: Computational Challenges
Batista V. Energy Research: Computational Challenges. 2011 DOI: 10.1002/9781119951438.eibc0461.Peer-Reviewed Original ResearchElectron transferEarth abundant transition metal complexesTransition metal complexesInterfacial electron transferNovel photocatalytic materialsVisible light absorptionNanoporous TiO2 thin filmsMetal complexesManganese catalystsPhotocatalytic materialsPhotocatalytic mechanismTiO2 thin filmsLight absorptionSolar cellsRecent computational workSemiconductor materialsFuel productionThin filmsRenewable resourcesElectrochemistryOverall efficiencyCatalystSpectroscopyComputational workRecent advances
2010
Water -stable, hydroxamate anchors for functionalization of TiO 2 surfaces with ultrafast interfacial electron transfer
McNamara W, Milot R, Song H, Snoeberger R, Batista V, Schmuttenmaer C, Brudvig G, Crabtree R. Water -stable, hydroxamate anchors for functionalization of TiO 2 surfaces with ultrafast interfacial electron transfer. Energy & Environmental Science 2010, 3: 917-923. DOI: 10.1039/c001065k.Peer-Reviewed Original ResearchInterfacial electron transferUltrafast interfacial electron transferTiO2 nanoparticlesSolar energy conversionElectron transferPhotocatalytic cellsNanoparticlesOrganic dyesTiO 2 surfaceMetal oxidesEnergy conversionElectron injectionConduction bandTHz spectroscopyAqueous conditionsTiO2Transition metal complexesNeutral pHFunctionalizationMetal complexesCarboxylate anchorStrong bindingStable moleculesOxideCarboxylic acids
2005
Energy Research: Computational Challenges
Batista V. Energy Research: Computational Challenges. 2005 DOI: 10.1002/0470862106.ia812.Peer-Reviewed Original ResearchElectron transferEarth abundant transition metal complexesTransition metal complexesInterfacial electron transferNovel photocatalytic materialsVisible light absorptionNanoporous TiO2 thin filmsMetal complexesManganese catalystsPhotocatalytic materialsPhotocatalytic mechanismTiO2 thin filmsLight absorptionSolar cellsRecent computational workSemiconductor materialsFuel productionThin filmsRenewable resourcesElectrochemistryOverall efficiencyCatalystSpectroscopyComputational workRecent advances