2021
Treatment of pyoderma gangrenosum: A multicenter survey-based study assessing satisfaction and quality of life.
Hobbs MM, Byler R, Latour E, Bonomo L, Hennessy K, Cruz-Diaz CN, Shinohara MM, Seminario-Vidal L, Shinkai K, Ortega-Loayza AG. Treatment of pyoderma gangrenosum: A multicenter survey-based study assessing satisfaction and quality of life. Dermatologic Therapy 2021, 34: e14736. PMID: 33394563, DOI: 10.1111/dth.14736.Peer-Reviewed Original Research
2016
Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts
Fay ME, Myers DR, Kumar A, Turbyfield CT, Byler R, Crawford K, Mannino RG, Laohapant A, Tyburski EA, Sakurai Y, Rosenbluth MJ, Switz NA, Sulchek TA, Graham MD, Lam WA. Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 1987-1992. PMID: 26858400, PMCID: PMC4776450, DOI: 10.1073/pnas.1508920113.Peer-Reviewed Original ResearchConceptsHematopoietic stem cell mobilizationEffects of glucocorticoidsStem cell mobilizationWhite blood cellsHealthy human subjectsInnate immune systemProportion of granulocytesCatecholamine exposureBlood countGranulocyte countInflammatory processCell mobilizationLeukocyte traffickingDemarginationVascular wallImmune systemLeukocyte stiffnessGlucocorticoidsCatecholamine hormonesBlood cellsCapillary bedHuman subjectsUnderlying mechanismLarge vesselsCount
2013
White Blood Cell Mechanics Mediate Glucocorticoid- and Catecholamine-Induced Demargination
Fay M, Myers D, Kumar A, Byler R, Sulchek T, Graham M, Lam W. White Blood Cell Mechanics Mediate Glucocorticoid- and Catecholamine-Induced Demargination. Blood 2013, 122: 3459. DOI: 10.1182/blood.v122.21.3459.3459.Peer-Reviewed Original ResearchStiffness Dependent Separation of Cells in a Microfluidic Device
Wang G, Mao W, Byler R, Patel K, Henegar C, Alexeev A, Sulchek T. Stiffness Dependent Separation of Cells in a Microfluidic Device. PLOS ONE 2013, 8: e75901. PMID: 24146787, PMCID: PMC3797716, DOI: 10.1371/journal.pone.0075901.Peer-Reviewed Original ResearchConceptsMicrofluidic channelMicrofluidic separation techniquesContinuous cell separationAtomic force microscopySecondary flowNew microfluidic techniqueDifferent stiffnessMechanical stiffnessMicrofluidic deviceMicrofluidic techniquesStiffnessForce microscopyMicrofluidic approachCell perpendicularSeparation techniquesProcessing throughputPhysical principlesChannel axisMicrochannels