The relationship among E/I imbalance and face processing in ASD

Termara Parker, Adam Naples, Katarzyna Chawarska, Geraldine Dawson, Raphael Bernier, Shafali Jeste, Charles Nelson, James Dziura, Cynthia Brandt, Sara Jane Webb, Catherine Sugar, Michael Murias, Frederick Shic & James McPartland

McPartland Lab, Yale Child Study Center, New Haven, CT

Introduction

- A promising neural marker associated with impaired face processing for individuals with autism spectrum disorder (ASD) is the N170 event-related potential (ERP).
- Individuals with ASD exhibit longer N170 latencies to faces compared to typically developing (TD) individuals (McPartland et al., 2004).
- In addition to face processing, cortical excitation/inhibition (E/I) imbalances contribute to behavioral symptoms in ASD (Masuda et al., 2019).
- Electroencephalographic (EEG) studies of E/I imbalance reveal increased spontaneous gamma oscillations (30-50 Hz) at rest in ASD (Cornew et al., 2012; Orekhova et al., 2007).
- Attenuation of P100 amplitude in visual evoked potential (VEP) tasks (Siper et al., 2016).
- Very few EEG studies have examined the relationship between E/I imbalance and neural indices of face processing in children with ASD.

Central Questions

Is temporal processing of upright faces delayed in individuals with ASD?
Do neural indices of E/I imbalance associate with abnormal face processing?

Behavioral Methods

Cognitive assessments were conducted, and final diagnosis was determined by licensed clinical psychologists.

Standard Psychometric Measures of Social and Cognitive Functioning

- Autism Diagnostic Observation Schedule, 2nd Edition (ADOS-II)
- Differential Ability Scales, 2nd Edition (DAS-II)
- A Developmental Neuropsychological Assessment (NEPSY-II)

Exclusion Criteria

- Children with sensory or motor impairments, epilepsy, and genetic or neurological conditions

Participant Demographics

<table>
<thead>
<tr>
<th>Clinical Diagnosis</th>
<th>N</th>
<th>Sex (M,F)</th>
<th>Age (SD)</th>
<th>IQ (SD)</th>
<th>NEPSY-II: Affect Recognition Scaled Score (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD</td>
<td>54</td>
<td>35, 19</td>
<td>8.53 (1.74)</td>
<td>116.30 (13.44)</td>
<td>11 (4)</td>
</tr>
<tr>
<td>ASD</td>
<td>106</td>
<td>85, 21</td>
<td>8.94 (1.60)</td>
<td>101.14 (17.53)</td>
<td>8 (4)</td>
</tr>
</tbody>
</table>

Figure 1. Clinical Criteria. Groups were matched on age (p>0.05) but differed significantly on Full-scale IQ and NEPSY-II Affect Recognition scaled scores (p<0.01).

EEG Methods

Acquisition: EEG was recorded at 1000 Hz with a 128-channel HydroCel Geodesic Sensor Net

Experimental Paradigm: Resting State

- Objective: Assess brain activity at rest (eye open) how activity relates to abnormalities of cortical E/I imbalance
- Design: 6 x 30 sec videos of non-social dynamic abstract images
- Inclusion criteria: > 20 seconds of attended and artifact free EEG segments
- Primary dependent variable: Slope of the power spectrum
 - Gamma (30-50 Hz)

Experimental Paradigm: VEP

- Objective: Explore possible consequences of an E/I imbalance on the visual system in ASD
- Design: Black and white checkerboards reverse phase every 500ms for a total of 100 trials
- Inclusion criteria: > 20 artifact-free trials
- Primary dependent variable: P1 peak amplitude

Experimental Paradigm: ABC-CT Faces

- Objective: Examine neural processing of faces
- Design: 216 total trials of static images of upright faces, inverted faces, and houses
- Inclusion criteria: > 20 artifact-free trials
- Primary dependent variable: N170 latency for upright faces

Results

Figure 8. Slower N170 latency for upright faces in individuals with ASD (TD: 207.96 ± 15.08 ms; TD: 197.41 ± 14.89 ms, p=0.037).

Figure 9. Resting-state gamma power was correlated with VEP P100 amplitude (r(160)= -0.157, p=0.048).

Figure 10. Resting-state gamma and VEP P100 amplitude was not associated with different N170 latencies for upright faces (p=0.05).

Acknowledgments

This work was supported by the National Institute of Mental Health (U19 MH108206, McPartland) and the National Graduate Research Fellowship Program. Special thanks to the children and families that contributed to this work.

References