Resting-State EEG Asymmetry and Irritability in Children with ASD: The Autism Biomarkers Consortium for Clinical Trials

1Center for Child Health, Behavior and Development, Seattle Children’s Research Institute

This study was funded by the Autism Biomarkers Consortium for Clinical Trials (ABC-CT) to derive the power within the chosen frequency bands of EEG, and the ABC-CT Consortium

Background

• Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by social communication and behavioral impairments.
• Irritability, or a proromene experience negative affective states like anger or frustration, is associated with several mental health disorders and is an important target of clinical trials for ASD (Barata et al., 2016; Brotman et al., 2017; Elbe & Lanahl, 2012).
• Electroencephalography (EEG) measures neural activity and has been discussed as a potential biomarker in several mental health disorders. EEG is particularly important in ASD research due to its non-invasive protocol and flexibility (Webb et al., 2015).
• Acquired during resting state EEG, Alpha power, represents frequency in the 6 to 12Hz and has been shown to be increased in ASD (representing decreased activity), although findings are mixed (Wang et al., 2013). Right Frontal Alpha-Aymmetry (FAA) may index behaviors associated with withdrawal and other negative temperament characteristics. Additionally, infants at higher risk for ASD begin with a left relative fronto asymmetry that shifts toward the right as they develop (Gabor-Sunthorn et al., 2015; Sutton et al., 2005).

This study investigates the relationship between fronto alpha asymmetry and irritability in ASD children.

• Hypothesis 1: Compared to TD, ASD children will show both higher parent-reported irritability and greater alpha power in the right than left frontal lobe (Right FAA).
• Hypothesis 2: Children with ASD who score clinically high in irritability will show Right FAA compared to ASD children with low irritability.

Methods

The Autism Biomarkers Consortium for Clinical Trials (ABC-CT) is a NIH-funded five-site longitudinal study investigating potential biomarkers in children ages 6-11.5 with ASD compared to typically developing peers. Data collected includes clinical/social functioning, eye-tracking, and EEG. Measures include Autism Diagnostic Observation Schedule (ADOS) for ASD severity, Differential Ability Scale (DAS) for IQ, Aberrant Behavior Checklist – Irritability Subscale, Resting-state EEG data – High and Low Alpha Power.

Resting-State EEG Collection & Processing

• EEG System: EEG 128 Channel HydroCel Geodesic Sensor Net, with either 300 or 400 amps, at a 1000 Hz sampling rate, with a 0.1-2000 Hz filter, and a 0.1Hz high pass filter post-acquisition.
• Resting-state EEG stimuli consisted of 180 seconds of non-social abstract images presented as 6 videos divided into 3 blocks. Participants were reminded to sit still and watch the videos without talking.
• Log EEG, videos, and EEG loss was reviewed for protocol fidelity, child compliance, and file integrity. Resting-state data was processed through the Batch EEG Automated Processing Platform (BEAPP, Levin et al., 2018) to derive power within the chosen frequency bands–study this uses alpha (8.99-12.99Hz) and low alpha (9.12-9.99Hz).

Participants

• 399 (280 ASD) were enrolled in the study (365+25 ASD provided ≥200 seconds of attended, artifact-free EEG data).
• Using a raw irritability score clinical cutoff of ≥21, participants with ASD were divided into high (H=9) and low (L=183) irritability groups (Brinkley et al., 2007).
• There were no participants in the TD group that met the threshold for high irritability and therefore were not analyzed by High and Low Irritability.

Analysis

• FAA was calculated using mean Alpha Power as described in Sun, Plerakylia, & Hartikainen (2017) for: - Left Frontal (E20, E23, E24, E27, E28) and - Right Frontal (E3, E117, E118, E123, E124)
• FAA = Right Frontal Power – Left Frontal Power
• A score >0 reflects Right FAA
• Analyses utilized ANOVA(s) and correlations.

Results

H2a. Correlations within ASD

• No relationships between High FAA or Low FAA and IQ, ASD severity, or parent-reported irritability.

H2b. ANOVAs within ASD

• There was no significant difference between (H) and (L) irritability ASD groups in either High FAA, (F1,250=0.011 or Low FAA, F1,250=0.677) as shown in the graph below.

Discussion

• Irritability is a transdiagnostic characteristic and is found across childhood neurodevelopmental disorders and childhood mental health disorders. Irritability is a target of treatment for ASD. Our goal was to examine if frontal asymmetry in the alpha band was related to irritability in children with ASD.

Conclusion

• Children with ASD compared to children with TD were reported as having more behaviors that were characterized as reflecting "irritability" by their parents.
• However, we neither found differences in FAA in children with ASD and TD, nor within children with ASD who had High or Low Irritability scores on the ABC.
• Additionally, there were no relationships between ASD severity, IQ, irritability, and High or Low FAA.

Future Steps

• It may be that FAA in a child is a related to parent report of irritability or irritability that could matter (state) during the EEG may influence FAA. As a follow up, we will be able to look at mood ratings taken by the experimenter during acquisition.

Table 1. Mean and (SD) for TD and ASD participants at T1.

<table>
<thead>
<tr>
<th></th>
<th>TD</th>
<th>ASD</th>
<th>ASD Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>Irritability</td>
<td>Irritability</td>
</tr>
<tr>
<td>Total N</td>
<td>116</td>
<td>252</td>
<td>69</td>
</tr>
<tr>
<td>Female N</td>
<td>36 / 31.03%</td>
<td>61 / 24.21%</td>
<td>11 / 15.94%</td>
</tr>
<tr>
<td>Age in years</td>
<td>8.49 (1.61)</td>
<td>8.58 (1.64)</td>
<td>8.67 (1.75)</td>
</tr>
<tr>
<td>DAS Full Scale IQ</td>
<td>115.22 (12.32)</td>
<td>96.65 (20.97)</td>
<td>98.51 (21.01)</td>
</tr>
<tr>
<td>ADOS CSS</td>
<td>1.59 (0.875)</td>
<td>7.58 (1.787)</td>
<td>7.39 (1.89)</td>
</tr>
<tr>
<td>ABC Irritability</td>
<td>1.23 (0.24)</td>
<td>12.49 (2.92)</td>
<td>24.93 (6.02)</td>
</tr>
<tr>
<td>High FAA</td>
<td>-0.011 (0.274)</td>
<td>0.016 (0.259)</td>
<td>0.036 (0.264)</td>
</tr>
<tr>
<td>Low FAA</td>
<td>-0.053 (0.276)</td>
<td>-0.013 (0.262)</td>
<td>0.005 (0.273)</td>
</tr>
</tbody>
</table>

Table 2: irritability and FAA Correlations in ASD T1.

Frontal Alpha Asymmetry by Low and High Irritability in ASD (N=252)

Future Steps

• It may be that FAA in a child is a related to parent report of irritability or irritability that could matter (state) during the EEG may influence FAA. As a follow up, we will be able to look at mood ratings taken by the experimenter during acquisition.

Thank you to the National Institutes of Health, funding NIH U19 MH108206 (McPartland). Thank you to all the families and sites that participated in the ABC-CT, DAAAC, and DCC members, project management, and mentors in the WebLab. More ABC-CT posters at https://medicine.yale.edu/ycci/programsprojects/autism/posterspapers/insar2020/