Featured Publications
Clinical characteristics and outcomes for 7,995 patients with SARS-CoV-2 infection
McPadden J, Warner F, Young HP, Hurley NC, Pulk RA, Singh A, Durant TJS, Gong G, Desai N, Haimovich A, Taylor RA, Gunel M, Dela Cruz CS, Farhadian SF, Siner J, Villanueva M, Churchwell K, Hsiao A, Torre CJ, Velazquez EJ, Herbst RS, Iwasaki A, Ko AI, Mortazavi BJ, Krumholz HM, Schulz WL. Clinical characteristics and outcomes for 7,995 patients with SARS-CoV-2 infection. PLOS ONE 2021, 16: e0243291. PMID: 33788846, PMCID: PMC8011821, DOI: 10.1371/journal.pone.0243291.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionYale New Haven HealthSARS-CoV-2Hospital mortalityRisk of admissionMale sexRisk factorsSARS-CoV-2 testingInvasive mechanical ventilationSevere acute respiratory syndrome virusBurden of diseaseRT-PCR testingAcademic health systemDiverse patient populationsRespiratory syndrome virusEthnic groupsAdult patientsClinical characteristicsDischarge dispositionRespiratory supportPrimary outcomeTreatment guidelinesMechanical ventilationRetrospective studyPatient population
2024
SOFA score performs worse than age for predicting mortality in patients with COVID-19
Sherak R, Sajjadi H, Khimani N, Tolchin B, Jubanyik K, Taylor R, Schulz W, Mortazavi B, Haimovich A. SOFA score performs worse than age for predicting mortality in patients with COVID-19. PLOS ONE 2024, 19: e0301013. PMID: 38758942, PMCID: PMC11101117, DOI: 10.1371/journal.pone.0301013.Peer-Reviewed Original ResearchConceptsCrisis standards of careIn-hospital mortalityIntensive care unitAcademic health systemSequential Organ Failure Assessment scoreCohort of intensive care unitSequential Organ Failure AssessmentStandard of careLogistic regression modelsMortality predictionPredicting in-hospital mortalityHealth systemUnivariate logistic regression modelCrisis standardsDisease morbidityCOVID-19Hypertension Trends and Disparities Over 12 Years in a Large Health System: Leveraging the Electronic Health Records
Brush J, Lu Y, Liu Y, Asher J, Li S, Sawano M, Young P, Schulz W, Anderson M, Burrows J, Krumholz H. Hypertension Trends and Disparities Over 12 Years in a Large Health System: Leveraging the Electronic Health Records. Journal Of The American Heart Association 2024, 13: e033253. PMID: 38686864, PMCID: PMC11179912, DOI: 10.1161/jaha.123.033253.Peer-Reviewed Original ResearchConceptsElectronic health recordsRegional health systemImprove hypertension careHealth systemHealth recordsHypertension careDiastolic blood pressureAge-adjusted prevalence ratesNon-Hispanic Black patientsPrevalence ratesLarger health systemCross-sectional analysisTransformation of medical dataLeveraging real-world dataHigh prevalence rateHypertension trendsHypertension prevalenceBlood pressureBlood pressure measurementsHypertension diagnosisPrimary outcomeNational trendsProportion of patientsAntihypertensive medicationsBlack patients
2021
Effectiveness of ChAdOx1 vaccine in older adults during SARS-CoV-2 Gamma variant circulation in São Paulo
Hitchings MDT, Ranzani OT, Dorion M, D’Agostini T, de Paula RC, de Paula OFP, de Moura Villela EF, Torres MSS, de Oliveira SB, Schulz W, Almiron M, Said R, de Oliveira RD, Silva PV, de Araújo WN, Gorinchteyn JC, Andrews JR, Cummings DAT, Ko AI, Croda J. Effectiveness of ChAdOx1 vaccine in older adults during SARS-CoV-2 Gamma variant circulation in São Paulo. Nature Communications 2021, 12: 6220. PMID: 34711813, PMCID: PMC8553924, DOI: 10.1038/s41467-021-26459-6.Peer-Reviewed Original ResearchMeSH KeywordsAgedBrazilCase-Control StudiesCOVID-19COVID-19 VaccinesFemaleHumansMaleMiddle AgedSARS-CoV-2ConceptsSingle doseOxford-AstraZeneca COVID-19 vaccineTest-negative case-control studySevere COVID-19 outcomesCOVID-19COVID-19-related deathsTwo-dose scheduleTwo-dose regimenCase-control studyCOVID-19 outcomesInter-dose intervalCOVID-19 hospitalizationCOVID-19 vaccineSARS-CoV-2ChAdOx1 vaccinePrimary endpointSecondary endpointsFirst doseSecond doseHigh prevalenceElderly individualsElderly populationVariant prevalenceVaccine supplyHospitalizationPrevalence of Dyslipidemia and Availability of Lipid-Lowering Medications Among Primary Health Care Settings in China
Lu Y, Zhang H, Lu J, Ding Q, Li X, Wang X, Sun D, Tan L, Mu L, Liu J, Feng F, Yang H, Zhao H, Schulz WL, Krumholz HM, Pan X, Li J, Huang C, Dong Z, Jiang B, Guo Z, Zhang Y, Sun J, Liu Y, Ren Z, Meng Y, Wang Z, Xi Y, Xing L, Tian Y, Liu J, Fu Y, Liu T, Sun W, Yan S, Jin L, Zheng Y, Wang J, Yan J, Xu X, Chen Y, Xing X, Zhang L, Zhong W, Fang X, Zhu L, Xu Y, Guo X, Xu C, Zhou G, Fan L, Qi M, Zhu S, Qi J, Li J, Yin L, Liu Q, Geng Q, Feng Y, Wang J, Wen H, Han X, Liu P, Ding X, Xu J, Deng Y, He J, Liu G, Jiang C, Zha S, Yang C, Bai G, Yu Y, Tashi Z, Qiu L, Hu Z, He H, Zhang J, Zhou M, Li X, Zhao J, Ma S, Ma Y, Huang Y, Zhang Y, Li F, Shen J. Prevalence of Dyslipidemia and Availability of Lipid-Lowering Medications Among Primary Health Care Settings in China. JAMA Network Open 2021, 4: e2127573. PMID: 34586366, PMCID: PMC8482054, DOI: 10.1001/jamanetworkopen.2021.27573.Peer-Reviewed Original ResearchConceptsAtherosclerotic cardiovascular diseaseLipid-lowering medicationsPrimary care institutionsPrevalence of dyslipidemiaControl of dyslipidemiaLipoprotein cholesterolCare institutionsControl rateFemale sexCardiovascular diseaseMAIN OUTCOMEHigh riskNonstatin lipid-lowering drugsHigh-density lipoprotein cholesterolLow-density lipoprotein cholesterolPrimary health care settingsMajor public health problemLipid lowering medicationsMillion Persons ProjectOverall control rateLDL-C levelsLipid-lowering drugsCross-sectional studyPublic health problemHealth care settingsDelayed production of neutralizing antibodies correlates with fatal COVID-19
Lucas C, Klein J, Sundaram ME, Liu F, Wong P, Silva J, Mao T, Oh JE, Mohanty S, Huang J, Tokuyama M, Lu P, Venkataraman A, Park A, Israelow B, Vogels CBF, Muenker MC, Chang CH, Casanovas-Massana A, Moore AJ, Zell J, Fournier JB, Wyllie A, Campbell M, Lee A, Chun H, Grubaugh N, Schulz W, Farhadian S, Dela Cruz C, Ring A, Shaw A, Wisnewski A, Yildirim I, Ko A, Omer S, Iwasaki A. Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine 2021, 27: 1178-1186. PMID: 33953384, PMCID: PMC8785364, DOI: 10.1038/s41591-021-01355-0.Peer-Reviewed Original ResearchConceptsDeceased patientsAntibody levelsAntibody responseDisease severityAnti-S IgG levelsCOVID-19 disease outcomesFatal COVID-19Impaired viral controlWorse clinical progressionWorse disease severitySevere COVID-19Length of hospitalizationImmunoglobulin G levelsHumoral immune responseCoronavirus disease 2019COVID-19 mortalityCOVID-19Domain (RBD) IgGSeroconversion kineticsDisease courseIgG levelsClinical parametersClinical progressionHumoral responseDisease onsetThe Association of COVID-19 With Acute Kidney Injury Independent of Severity of Illness: A Multicenter Cohort Study
Moledina DG, Simonov M, Yamamoto Y, Alausa J, Arora T, Biswas A, Cantley LG, Ghazi L, Greenberg JH, Hinchcliff M, Huang C, Mansour SG, Martin M, Peixoto A, Schulz W, Subair L, Testani JM, Ugwuowo U, Young P, Wilson FP. The Association of COVID-19 With Acute Kidney Injury Independent of Severity of Illness: A Multicenter Cohort Study. American Journal Of Kidney Diseases 2021, 77: 490-499.e1. PMID: 33422598, PMCID: PMC7791318, DOI: 10.1053/j.ajkd.2020.12.007.Peer-Reviewed Original ResearchMeSH KeywordsAcute Kidney InjuryAgedCohort StudiesCOVID-19C-Reactive ProteinCreatinineDiureticsFemaleHospital MortalityHumansIntensive Care UnitsLength of StayMaleMiddle AgedProportional Hazards ModelsRenal DialysisRenal Insufficiency, ChronicRespiration, ArtificialRisk FactorsSARS-CoV-2Severity of Illness IndexUnited StatesVasoconstrictor AgentsConceptsAcute kidney injurySARS-CoV-2Cohort studyRisk factorsCOVID-19Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testingTime-updated Cox proportional hazards modelsDialysis-requiring acute kidney injuryYale New Haven Health SystemHigher inflammatory marker levelsMore acute kidney injuryCox proportional hazards modelMulticenter cohort studyHigh rateInflammatory marker levelsTraditional risk factorsProportional hazards modelCoronavirus disease 2019KDIGO criteriaNephrotoxin exposureKidney injuryInjury independentUnivariable analysisNasopharyngeal samplesMarker levels
2020
Evaluation of a Risk Stratification Model Using Preoperative and Intraoperative Data for Major Morbidity or Mortality After Cardiac Surgical Treatment
Durant TJS, Jean RA, Huang C, Coppi A, Schulz WL, Geirsson A, Krumholz HM. Evaluation of a Risk Stratification Model Using Preoperative and Intraoperative Data for Major Morbidity or Mortality After Cardiac Surgical Treatment. JAMA Network Open 2020, 3: e2028361. PMID: 33284333, DOI: 10.1001/jamanetworkopen.2020.28361.Peer-Reviewed Original ResearchLongitudinal analyses reveal immunological misfiring in severe COVID-19
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu P, Venkataraman A, Park A, Mohanty S, Wang H, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A, Herbst R, Shaw A, Medzhitov R, Schulz W, Grubaugh N, Dela Cruz C, Farhadian S, Ko A, Omer S, Iwasaki A. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584: 463-469. PMID: 32717743, PMCID: PMC7477538, DOI: 10.1038/s41586-020-2588-y.Peer-Reviewed Original ResearchConceptsSevere COVID-19Moderate COVID-19Immune signaturesDisease outcomeCOVID-19Disease trajectoriesInterleukin-5Early immune signaturesInnate cell lineagesType 2 effectorsT cell numbersPoor clinical outcomeWorse disease outcomesImmune response profileCoronavirus disease 2019Distinct disease trajectoriesCytokine levelsImmunological correlatesImmune profileClinical outcomesEarly elevationImmune profilingIL-13Immunoglobulin EDisease 2019Development and Validation of the Quick COVID-19 Severity Index: A Prognostic Tool for Early Clinical Decompensation
Haimovich AD, Ravindra NG, Stoytchev S, Young HP, Wilson FP, van Dijk D, Schulz WL, Taylor RA. Development and Validation of the Quick COVID-19 Severity Index: A Prognostic Tool for Early Clinical Decompensation. Annals Of Emergency Medicine 2020, 76: 442-453. PMID: 33012378, PMCID: PMC7373004, DOI: 10.1016/j.annemergmed.2020.07.022.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAgedBetacoronavirusClinical Laboratory TechniquesCoronavirus InfectionsCOVID-19COVID-19 TestingEmergency Service, HospitalFemaleHumansMaleMiddle AgedOxygen Inhalation TherapyPandemicsPneumonia, ViralRespiratory InsufficiencyRetrospective StudiesRisk AssessmentSARS-CoV-2Severity of Illness IndexYoung AdultConceptsCOVID-19 Severity IndexQuick COVID-19 severity indexQuick Sequential Organ Failure AssessmentSequential Organ Failure AssessmentOrgan Failure AssessmentHours of admissionRespiratory failureSeverity IndexScoring systemSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Bedside scoring systemOxygen requirementPneumonia severity scoresHours of hospitalizationElixhauser Comorbidity IndexEmergency department patientsSeverity Index scoreCOVID-19 patientsSyndrome coronavirus 2Coronavirus disease 2019Failure AssessmentSimple scoring systemIndependent test cohortRates and Predictors of Patient Underreporting of Hospitalizations During Follow-Up After Acute Myocardial Infarction
Caraballo C, Khera R, Jones PG, Decker C, Schulz W, Spertus JA, Krumholz HM. Rates and Predictors of Patient Underreporting of Hospitalizations During Follow-Up After Acute Myocardial Infarction. Circulation Cardiovascular Quality And Outcomes 2020, 13: e006231. PMID: 32552061, PMCID: PMC9465954, DOI: 10.1161/circoutcomes.119.006231.Peer-Reviewed Original ResearchConceptsAcute myocardial infarctionMyocardial infarctionHospitalization eventsMedical recordsLongitudinal multicenter cohort studyMulticenter cohort studyMedical record abstractionDifferent patient characteristicsHealth care eventsPatients' underreportingTRIUMPH registryAccuracy of reportingCohort studyPatient characteristicsRecord abstractionProspective studyClinical studiesClinical investigationHospitalizationPatientsCare eventsInfarctionEvent ratesParticipantsPredictorsLeveraging the Electronic Health Records for Population Health: A Case Study of Patients With Markedly Elevated Blood Pressure
Lu Y, Huang C, Mahajan S, Schulz WL, Nasir K, Spatz ES, Krumholz HM. Leveraging the Electronic Health Records for Population Health: A Case Study of Patients With Markedly Elevated Blood Pressure. Journal Of The American Heart Association 2020, 9: e015033. PMID: 32200730, PMCID: PMC7428633, DOI: 10.1161/jaha.119.015033.Peer-Reviewed Original ResearchConceptsDiastolic blood pressureSystolic blood pressureElevated blood pressureBlood pressureElectronic health recordsPopulation health surveillanceHealth recordsYale New Haven Health SystemHealth surveillanceHealth systemPatterns of patientsLarge health systemUsual careOutpatient encountersControl ratePatientsCare patternsPopulation healthMonthsHgSurveillancePrevalenceRecordsVisitsCare
2019
Blood utilisation and transfusion reactions in adult patients transfused with conventional or pathogen‐reduced platelets
Bahar B, Schulz WL, Gokhale A, Spencer BR, Gehrie EA, Snyder EL. Blood utilisation and transfusion reactions in adult patients transfused with conventional or pathogen‐reduced platelets. British Journal Of Haematology 2019, 188: 465-472. PMID: 31566724, PMCID: PMC7003815, DOI: 10.1111/bjh.16187.Peer-Reviewed Original ResearchMeSH KeywordsAdultBlood PlateletsDisinfectionFemaleHumansMaleMiddle AgedPlatelet TransfusionTransfusion ReactionConceptsPathogen-reduced plateletsTransfusion reactionsPlatelet componentsAdult patientsPlatelet transfusionsSeptic transfusion reactionsRed blood cell transfusion requirementsPR plateletsYale-New Haven HospitalPlatelet component transfusionsComparable clinical efficacyType of transfusionTransfusion requirementsTransfusion trendsPlatelet administrationComponent transfusionClinical efficacyNumber of RBCsConventional plateletsBlood utilisationPatientsTransfusionMean timePlateletsRBCsCharacteristics of High Cardiovascular Risk in 1.7 Million Chinese Adults.
Lu J, Lu Y, Yang H, Bilige W, Li Y, Schulz W, Masoudi FA, Krumholz HM. Characteristics of High Cardiovascular Risk in 1.7 Million Chinese Adults. Annals Of Internal Medicine 2019, 170: 298-308. PMID: 30776800, DOI: 10.7326/m18-1932.Peer-Reviewed Original ResearchConceptsHigh CVD riskCVD riskHigh riskHigh cardiovascular disease riskCardiovascular risk increasesHigh cardiovascular riskOverall study populationCardiovascular disease riskBody mass indexMultivariable mixed modelsNational Health CommissionAntihypertensive medicationsAspirin useCardiovascular riskCVD screeningMass indexStudy populationChinese adultsHan ethnicityDisease riskStatinsMixed modelsHealth CommissionSocioeconomic statusPopulation subgroups
2018
Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study
Huang C, Murugiah K, Mahajan S, Li SX, Dhruva SS, Haimovich JS, Wang Y, Schulz WL, Testani JM, Wilson FP, Mena CI, Masoudi FA, Rumsfeld JS, Spertus JA, Mortazavi BJ, Krumholz HM. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. PLOS Medicine 2018, 15: e1002703. PMID: 30481186, PMCID: PMC6258473, DOI: 10.1371/journal.pmed.1002703.Peer-Reviewed Original ResearchMeSH KeywordsAcute Kidney InjuryAgedClinical Decision-MakingData MiningDecision Support TechniquesFemaleHumansMachine LearningMaleMiddle AgedPercutaneous Coronary InterventionProtective FactorsRegistriesReproducibility of ResultsRetrospective StudiesRisk AssessmentRisk FactorsTime FactorsTreatment OutcomeConceptsPercutaneous coronary interventionNational Cardiovascular Data RegistryRisk prediction modelAKI eventsAKI riskCoronary interventionAKI modelMean ageCardiology-National Cardiovascular Data RegistryAcute kidney injury riskAKI risk predictionRetrospective cohort studyIdentification of patientsCandidate variablesAvailable candidate variablesCohort studyPCI proceduresPoint of careBrier scoreAmerican CollegeData registryPatientsCalibration slopeInjury riskSame cohortAssociation of Body Mass Index With Blood Pressure Among 1.7 Million Chinese Adults
Linderman GC, Lu J, Lu Y, Sun X, Xu W, Nasir K, Schulz W, Jiang L, Krumholz HM. Association of Body Mass Index With Blood Pressure Among 1.7 Million Chinese Adults. JAMA Network Open 2018, 1: e181271-e181271. PMID: 30646115, PMCID: PMC6324286, DOI: 10.1001/jamanetworkopen.2018.1271.Peer-Reviewed Original ResearchConceptsBody mass indexSystolic blood pressureBlood pressureAntihypertensive medicationsMass indexMean (SD) BMIMean (SD) systolic BPIncrease of BPUnit body mass indexPrimary health care sitesComprehensive subgroup analysisMillion Persons ProjectDiastolic blood pressureSubgroup of patientsCross-sectional studyElectronic BP monitorsHealth care sitesSubgroup of individualsUntreated subgroupSubgroup analysisCare sitesBP monitorMAIN OUTCOMEChinese adultsChinese population
2014
Amputation Neuroma Growing Intravascularly Into a Thrombus
Schulz WL, Manivel JC. Amputation Neuroma Growing Intravascularly Into a Thrombus. International Journal Of Surgical Pathology 2014, 22: 645-646. PMID: 24477938, DOI: 10.1177/1066896913520038.Peer-Reviewed Original Research