2021
Cerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1
Zhang Y, Varela L, Szigeti-Buck K, Williams A, Stoiljkovic M, Šestan-Peša M, Henao-Mejia J, D’Acunzo P, Levy E, Flavell RA, Horvath TL, Kaczmarek LK. Cerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1. Nature Communications 2021, 12: 1731. PMID: 33741962, PMCID: PMC7979925, DOI: 10.1038/s41467-021-22003-8.Peer-Reviewed Original ResearchConceptsTank Binding Kinase 1HAX-1Kv3.3 potassium channelMultivesicular bodiesKinase 1TANK-binding kinase 1Activation of caspasesAnti-apoptotic proteinsPotassium channelsMembrane proteinsBiochemical pathwaysCerebellar neuronsChannels bindCell deathTBK1 activityIon channelsMutant channelsCellular constituentsTraffickingKv3.3 channelsProteinNeuronal survivalMutationsChannel inactivationCaspases
2020
GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function
Timper K, del Río-Martín A, Cremer AL, Bremser S, Alber J, Giavalisco P, Varela L, Heilinger C, Nolte H, Trifunovic A, Horvath TL, Kloppenburg P, Backes H, Brüning JC. GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metabolism 2020, 31: 1189-1205.e13. PMID: 32433922, PMCID: PMC7272126, DOI: 10.1016/j.cmet.2020.05.001.Peer-Reviewed Original Research
2017
Mitochondria Bioenergetic and Cognitive Functions: The Cannabinoid Link
Mancini G, Horvath TL. Mitochondria Bioenergetic and Cognitive Functions: The Cannabinoid Link. Trends In Cell Biology 2017, 27: 391-392. PMID: 28487182, DOI: 10.1016/j.tcb.2017.04.003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCannabinoidsCognitionEnergy MetabolismHumansMitochondriaModels, BiologicalSignal Transduction(S)Pot on Mitochondria: Cannabinoids Disrupt Cellular Respiration to Limit Neuronal Activity
Harkany T, Horvath TL. (S)Pot on Mitochondria: Cannabinoids Disrupt Cellular Respiration to Limit Neuronal Activity. Cell Metabolism 2017, 25: 8-10. PMID: 28076767, DOI: 10.1016/j.cmet.2016.12.020.Peer-Reviewed Original ResearchMeSH KeywordsCannabinoidsHumansMemoryMitochondriaReceptor, Cannabinoid, CB1Receptors, CannabinoidSignal Transduction
2016
Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability
García-Cáceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P, Ninkovic J, Yi CX, Le Thuc O, Szigeti-Buck K, Cai W, Meyer CW, Pfluger PT, Fernandez AM, Luquet S, Woods SC, Torres-Alemán I, Kahn CR, Götz M, Horvath TL, Tschöp MH. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell 2016, 166: 867-880. PMID: 27518562, PMCID: PMC8961449, DOI: 10.1016/j.cell.2016.07.028.Peer-Reviewed Original ResearchConceptsBlood-brain barrierSystemic glucose metabolismInsulin receptorGlucose metabolismGlucose uptakeGlial fibrillary acidic proteinBrain glucose uptakePostnatal ablationHypothalamic glucose sensingGlutamate-aspartate transporterFibrillary acidic proteinPositron emission tomographyMelanocortin neuronsKO miceGlucose levelsAstrocyte morphologyNormal responseEmission tomographyGlucose-induced activationAcidic proteinAspartate transporterCircuit connectivityInsulinGlucose availabilityMitochondrial functionThe role of astrocytes in the hypothalamic response and adaptation to metabolic signals
Chowen JA, Argente-Arizón P, Freire-Regatillo A, Frago LM, Horvath TL, Argente J. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Progress In Neurobiology 2016, 144: 68-87. PMID: 27000556, DOI: 10.1016/j.pneurobio.2016.03.001.Peer-Reviewed Original ResearchConceptsHypothalamic responseMetabolic signalsRole of astrocytesIncidence of obesityAnorexigenic hormone leptinType 2 diabetesHypothalamic adaptationsImportant metabolic signalsDiabetes mellitusHypothalamic circuitsSecondary complicationsChronic conditionsHormone leptinGlial cellsSynaptic transmissionAdequate treatmentMetabolic diseasesSynaptic plasticityNeuroendocrine controlHomeostatic functionsNeighboring neuronsMetabolic homeostasisHormonal inputsObesityHypothalamusKv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating
Zhang Y, Zhang XF, Fleming MR, Amiri A, El-Hassar L, Surguchev AA, Hyland C, Jenkins DP, Desai R, Brown MR, Gazula VR, Waters MF, Large CH, Horvath TL, Navaratnam D, Vaccarino FM, Forscher P, Kaczmarek LK. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating. Cell 2016, 165: 434-448. PMID: 26997484, PMCID: PMC4826296, DOI: 10.1016/j.cell.2016.02.009.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActin-Related Protein 2Actin-Related Protein 2-3 ComplexActin-Related Protein 3Adaptor Proteins, Signal TransducingAmino Acid SequenceCell MembraneMolecular Sequence DataMutationNeuronsPluripotent Stem CellsRac GTP-Binding ProteinsShaw Potassium ChannelsSignal TransductionSpinocerebellar AtaxiasConceptsCytoplasmic C-terminusProline-rich domainPlasma membraneHAX-1Actin nucleationC-terminusCortical actin filament networkLocal actin networkStem cell-derived neuronsActin filament networkCell-derived neuronsAnti-apoptotic proteinsActin cytoskeletonKv3.3 potassium channelActin assemblyActin structuresActin networkArp2/3Channel gatingFilament networkGrowth conesCerebellar neurodegenerationKv3.3TerminusPotassium channelsMetabolism and Mental Illness
Sestan-Pesa M, Horvath TL. Metabolism and Mental Illness. Trends In Molecular Medicine 2016, 22: 174-183. PMID: 26776095, DOI: 10.1016/j.molmed.2015.12.003.Peer-Reviewed Original ResearchConceptsCentral nervous systemMental illnessBasic metabolic principlesHigher brain functionsCerebral cortexNovel therapiesNervous systemBrain functionSystemic controlPathological conditionsIllnessAppetiteCrucial regulatorFuture research strategiesOverwhelming evidenceMetabolic principlesFeeding behaviorMetabolismHypothalamusTherapyCortexBrain
2015
Mitochondrial ROS Signaling in Organismal Homeostasis
Shadel GS, Horvath TL. Mitochondrial ROS Signaling in Organismal Homeostasis. Cell 2015, 163: 560-569. PMID: 26496603, PMCID: PMC4634671, DOI: 10.1016/j.cell.2015.10.001.Peer-Reviewed Original ResearchConceptsReactive oxygen speciesOrganismal homeostasisMitochondrial ROS signalingMitochondrial reactive oxygen speciesAdaptive physiological responsesROS signalingCellular differentiationMitochondrial oxygen consumptionOxidative phosphorylationPhysiological responsesOxygen speciesCentral roleHomeostasisEukaryotesOrganic fuel moleculesPhosphorylationMitochondriaMoleculesSignalingSpeciesATPDifferentiationPathwayGreater understandingRoleAgRP Neurons Regulate Bone Mass
Kim JG, Sun BH, Dietrich MO, Koch M, Yao GQ, Diano S, Insogna K, Horvath TL. AgRP Neurons Regulate Bone Mass. Cell Reports 2015, 13: 8-14. PMID: 26411686, PMCID: PMC5868421, DOI: 10.1016/j.celrep.2015.08.070.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAnimalsArcuate Nucleus of HypothalamusBone DensityBone Diseases, MetabolicFemurGene Expression RegulationHomeostasisHypothalamusIon ChannelsLeptinMaleMiceMice, KnockoutMitochondrial ProteinsNeuronsNorepinephrinePhenotypePropranololReceptors, Adrenergic, betaReceptors, LeptinSignal TransductionSirtuin 1TibiaUncoupling Protein 2ConceptsAgRP neuronsCell-autonomous deletionSignificant regulatory roleAgRP neuronal functionBone massLeptin receptor deletionSkeletal bone metabolismTransgenic animalsRegulatory roleGene deletionBone homeostasisDeletionNeuronal functionPostnatal deletionSympathetic toneReceptor deletionArcuate nucleusLeptin actionBone metabolismSkeletal metabolismMultiple linesNeuronsMiceMetabolismCircuit integrity
2014
Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding
Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K, Gao Y, Garcia-Caceres C, Yi CX, Salmaso N, Vaccarino FM, Chowen J, Diano S, Dietrich MO, Tschöp MH, Horvath TL. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience 2014, 17: 908-910. PMID: 24880214, PMCID: PMC4113214, DOI: 10.1038/nn.3725.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell CountEatingExcitatory Postsynaptic PotentialsGlial Fibrillary Acidic ProteinHypothalamusImmunohistochemistryIn Situ HybridizationLeptinMaleMelanocortinsMiceMice, KnockoutMicroscopy, ElectronNerve NetNeuronsPrimary Cell CulturePro-OpiomelanocortinPulmonary Gas ExchangeReal-Time Polymerase Chain ReactionRNA, MessengerSignal TransductionNeonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding
Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, Neupert S, Nicholls HT, Mauer J, Hausen AC, Predel R, Kloppenburg P, Horvath TL, Brüning JC. Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding. Cell 2014, 156: 495-509. PMID: 24462248, PMCID: PMC4101521, DOI: 10.1016/j.cell.2014.01.008.Peer-Reviewed Original ResearchConceptsPOMC neuronsMaternal high-fat diet (HFD) feedingOrexigenic agouti-related peptide (AgRP) neuronsHealth outcomesMaternal high-fat feedingHigh-fat diet feedingImpaired glucose-stimulated insulin secretionMaternal HFD feedingGlucose-stimulated insulin secretionImpaired glucose homeostasisOffspring health outcomesHigh-fat feedingPOMC projectionsParasympathetic innervationHFD feedingMaternal overnutritionPeptide neuronsAbnormal insulinAnorexigenic proopiomelanocortinParaventricular nucleusDiet feedingInsulin secretionMelanocortin circuitryNeuropeptide expressionLong-term effects
2013
Intranasal epidermal growth factor treatment rescues neonatal brain injury
Scafidi J, Hammond TR, Scafidi S, Ritter J, Jablonska B, Roncal M, Szigeti-Buck K, Coman D, Huang Y, McCarter RJ, Hyder F, Horvath TL, Gallo V. Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 2013, 506: 230-234. PMID: 24390343, PMCID: PMC4106485, DOI: 10.1038/nature12880.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, IntranasalAnimalsAnimals, NewbornBrain InjuriesCell DifferentiationCell DivisionCell LineageCell SurvivalDemyelinating DiseasesDisease Models, AnimalEpidermal Growth FactorErbB ReceptorsHumansHypoxiaInfant, Premature, DiseasesMaleMiceMolecular Targeted TherapyOligodendrogliaRegenerationSignal TransductionStem CellsTime FactorsConceptsDiffuse white matter injuryNeonatal brain injuryVery preterm infantsWhite matter injuryOligodendrocyte precursor cellsEpidermal growth factor receptorGrowth factor treatmentGrowth factor receptorPreterm infantsFunctional recoveryBrain injurySuch injuriesEpidermal growth factor treatmentMouse modelFactor treatmentInjuryFactor receptorPrecursor cellsInfantsReceptorsMaternal and Offspring Pools of Osteocalcin Influence Brain Development and Functions
Oury F, Khrimian L, Denny CA, Gardin A, Chamouni A, Goeden N, Huang YY, Lee H, Srinivas P, Gao XB, Suyama S, Langer T, Mann JJ, Horvath TL, Bonnin A, Karsenty G. Maternal and Offspring Pools of Osteocalcin Influence Brain Development and Functions. Cell 2013, 155: 228-241. PMID: 24074871, PMCID: PMC3864001, DOI: 10.1016/j.cell.2013.08.042.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsBrainFemaleFetusMiceNeurotransmitter AgentsOsteocalcinPregnancySignal TransductionConceptsOsteoblast-derived hormone osteocalcinBrain developmentBone-derived signalsBlood-brain barrierFetal brain developmentInfluences brain developmentBone massNeuronal apoptosisMonoamine neurotransmittersGABA synthesisMemory deficitsNeuroanatomical defectsOffspring poolPostnatal functionMaternal genotypeMetabolic functionsOsteocalcinPowerful regulationBrainMaternal influenceRegulationBrainstemPregnancyHippocampusMidbrainThe fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry
Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, Belgardt BF, Franz T, Horvath TL, Rüther U, Jaffrey SR, Kloppenburg P, Brüning JC. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nature Neuroscience 2013, 16: 1042-1048. PMID: 23817550, DOI: 10.1038/nn.3449.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAlpha-Ketoglutarate-Dependent Dioxygenase FTOAnimalsCocaineCorpus StriatumDopamineDopaminergic NeuronsExploratory BehaviorFemaleG Protein-Coupled Inwardly-Rectifying Potassium ChannelsLocomotionMaleMesencephalonMethylationMethyltransferasesMiceMice, Inbred C57BLMice, KnockoutMixed Function OxygenasesOxo-Acid-LyasesPhenotypeQuinpiroleReceptors, Dopamine D2Receptors, Dopamine D3RewardRNA Processing, Post-TranscriptionalRNA, MessengerSignal Transduction
2012
Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis
Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Reports 2012, 13: 1079-1086. PMID: 23146889, PMCID: PMC3512417, DOI: 10.1038/embor.2012.174.Peer-Reviewed Original ResearchConceptsGlucose homeostasisEnergy homeostasisPrevalence of obesityWhole-body energy homeostasisBody energy homeostasisAnorectic hormonesAgRP neuronsObese patientsProtein (AgRP) neuronsCentral effectsHypothalamic proopiomelanocortinBody weightInsulin actionLeptinHormonal actionMajor targetInsulin pathwayHomeostasisInsulinNeuronsHormoneBrainLatest findingsEnergy balanceSteady riseSirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism
Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH. Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism. Physiological Reviews 2012, 92: 1479-1514. PMID: 22811431, PMCID: PMC3746174, DOI: 10.1152/physrev.00022.2011.Peer-Reviewed Original ResearchConceptsSirtuin 1Sirtuin 3Nonalcoholic fatty liver diseaseMammalian sirtuin 1Multiple metabolic benefitsFatty liver diseaseDiet-induced obesityType 2 diabetesActivation of sirtuinsLiver diseaseCellular energy storesMetabolic benefitsMetabolic disordersPharmacological meansEnergy homeostasisPhysiological modulatorDependent deacetylasesMetabolic processesSirtuinsCellular energy homeostasisEnergy storesCellular sensorsEnergy statusAnabolic processesCatabolic process
2011
Obesity is associated with hypothalamic injury in rodents and humans
Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschöp MH, Schwartz MW. Obesity is associated with hypothalamic injury in rodents and humans. Journal Of Clinical Investigation 2011, 122: 153-162. PMID: 22201683, PMCID: PMC3248304, DOI: 10.1172/jci59660.Peer-Reviewed Original ResearchConceptsHigh-fat dietHFD feedingMediobasal hypothalamusPeripheral tissuesRodent modelsBody weight controlHypothalamic arcuate nucleusSubstantial weight gainConsequences of obesityNeuron injuryHypothalamic injuryNeuronal injuryNeuroprotective mechanismsReactive gliosisObese humansHypothalamic areaArcuate nucleusInflammatory signalingBrain areasWeight controlObesityGliosisEnergy homeostasisWeight gainInflammationMitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism
Diano S, Horvath TL. Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends In Molecular Medicine 2011, 18: 52-58. PMID: 21917523, DOI: 10.1016/j.molmed.2011.08.003.Peer-Reviewed Original ResearchConceptsProtein 2Lipid metabolismExcess of nutrientsHypothalamic neuronal circuitsNutrient availabilityPeripheral tissue functionsPhysiological functionsMetabolism regulationChronic diseasesMetabolism-related chronic diseasesTissue functionFuture therapeutic strategiesPathological processesPeripheral mechanismsLipid levelsNeuronal circuitsTherapeutic strategiesMetabolismImpairs healthMitochondriaDiseaseUCP2GlucoseRegulationNutrientsHigh-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons
Klöckener T, Hess S, Belgardt BF, Paeger L, Verhagen LA, Husch A, Sohn JW, Hampel B, Dhillon H, Zigman JM, Lowell BB, Williams KW, Elmquist JK, Horvath TL, Kloppenburg P, Brüning JC. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nature Neuroscience 2011, 14: 911-918. PMID: 21642975, PMCID: PMC3371271, DOI: 10.1038/nn.2847.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAnimalsAnimals, NewbornBlood GlucoseBody WeightCalorimetryDietary FatsDose-Response Relationship, DrugEatingEnzyme InhibitorsEnzyme-Linked Immunosorbent AssayFemaleGene Expression RegulationGlucose Tolerance TestGreen Fluorescent ProteinsHypoglycemic AgentsIn Vitro TechniquesInjections, IntraventricularInsulinLeptinMaleMiceMice, Inbred C57BLMice, TransgenicNeuronsObesityPatch-Clamp TechniquesPhosphatidylinositol 3-KinasesReceptor, InsulinRNA, MessengerSignal TransductionSteroidogenic Factor 1Time FactorsTolbutamideVentromedial Hypothalamic Nucleus