2024
microRNA-33 controls hunger signaling in hypothalamic AgRP neurons
Price N, Fernández-Tussy P, Varela L, Cardelo M, Shanabrough M, Aryal B, de Cabo R, Suárez Y, Horvath T, Fernández-Hernando C. microRNA-33 controls hunger signaling in hypothalamic AgRP neurons. Nature Communications 2024, 15: 2131. PMID: 38459068, PMCID: PMC10923783, DOI: 10.1038/s41467-024-46427-0.Peer-Reviewed Original ResearchConceptsAgRP neuronsFeeding behaviorFatty acid metabolismNon-coding RNAsMitochondrial biogenesisRegulatory pathwaysTarget genesHypothalamic AgRP neuronsExcessive nutrient intakeCentral regulatorBioenergetic processesAcid metabolismActivation of AgRP neuronsModulate feeding behaviorCentral regulation of feeding behaviorRegulation of feeding behaviorMiR-33Hunger signalsMicroRNA-33Metabolic diseasesAlternative therapeutic approachLoss of miR-33Mouse modelMetabolic dysfunctionRegulation
2023
A small-molecule degrader of TET3 as treatment for anorexia nervosa in an animal model
Lv H, Catarino J, Li D, Liu B, Gao X, Horvath T, Huang Y. A small-molecule degrader of TET3 as treatment for anorexia nervosa in an animal model. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2300015120. PMID: 37036983, PMCID: PMC10120042, DOI: 10.1073/pnas.2300015120.Peer-Reviewed Original ResearchConceptsVesicular GABA transporterActivity-based anorexiaExpression of AgRPNeuropeptide YAgRP neuronsAnorexia nervosaAnxiety/depressive-like behaviorsHypothalamic AgRP neuronsDepressive-like behaviorCurrent treatment optionsHigh relapse rateStress-related disordersHuman neuronal cellsNutritional supportRelapse rateTreatment optionsAnxiolytic effectsPsychiatric illnessMouse modelAnimal modelsHigh mortalityGABA transporterGenetic ablationNeuronal cellsNeurons
2022
TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons
Xie D, Stutz B, Li F, Chen F, Lv H, Sestan-Pesa M, Catarino J, Gu J, Zhao H, Stoddard CE, Carmichael GG, Shanabrough M, Taylor HS, Liu ZW, Gao XB, Horvath TL, Huang Y. TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons. Journal Of Clinical Investigation 2022, 132: e162365. PMID: 36189793, PMCID: PMC9525119, DOI: 10.1172/jci162365.Peer-Reviewed Original ResearchConceptsAgRP neuronsNeuropeptide YExpression of AgRPControl of feedingHypothalamic agoutiAnxiolytic effectsNeurotransmitter GABAMouse modelLeptin signalingStress-like behaviorsGenetic ablationNeuronsAgRPCritical central regulatorsEnergy expenditureGABAEnergy metabolismAppetiteFeedingCentral regulatorMetabolismCentral controlHuman cellsTET3ObesityAgRP neurons control structure and function of the medial prefrontal cortex
Stutz B, Waterson MJ, Šestan-Peša M, Dietrich MO, Škarica M, Sestan N, Racz B, Magyar A, Sotonyi P, Liu ZW, Gao XB, Matyas F, Stoiljkovic M, Horvath TL. AgRP neurons control structure and function of the medial prefrontal cortex. Molecular Psychiatry 2022, 27: 3951-3960. PMID: 35906488, PMCID: PMC9891653, DOI: 10.1038/s41380-022-01691-8.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexAgRP neuronsNon-selective dopamine receptor antagonistBrain functionPrefrontal cortexHypothalamic AgRP neuronsMedial thalamic neuronsAdministration of clozapineDopamine receptor antagonistVentral tegmental areaOscillatory network activityHigher-order brain functionsHypothalamic agoutiThalamic neuronsChemogenetic inhibitionDopaminergic neuronsReceptor antagonistTegmental areaNeuronal pathwaysSensorimotor gatingAdult miceModulatory impactAmbulatory behaviorConstitutive impairmentNeuronsAgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids
Endle H, Horta G, Stutz B, Muthuraman M, Tegeder I, Schreiber Y, Snodgrass IF, Gurke R, Liu ZW, Sestan-Pesa M, Radyushkin K, Streu N, Fan W, Baumgart J, Li Y, Kloss F, Groppa S, Opel N, Dannlowski U, Grabe HJ, Zipp F, Rácz B, Horvath TL, Nitsch R, Vogt J. AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids. Nature Metabolism 2022, 4: 683-692. PMID: 35760867, PMCID: PMC9940119, DOI: 10.1038/s42255-022-00589-7.Peer-Reviewed Original ResearchConceptsFasting-induced hyperphagiaCortical excitabilityAgRP neuronsLysophosphatidic acidPeripheral metabolismHigher body mass indexFasting-induced elevationHypothalamic AgRP neuronsEffects of LPABody mass indexHigher cortical excitabilityBrain lipid levelsCentral nervous systemPrevalence of typeGlutamatergic transmissionHypothalamic agoutiMass indexOvernight fastingPeptide neuronsCortical synapsesLipid levelsFood intakeCerebrospinal fluidNervous systemPhospholipid levels
2021
Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice
Varela L, Stutz B, Song JE, Kim JG, Liu ZW, Gao XB, Horvath TL. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice. Journal Of Clinical Investigation 2021, 131 PMID: 33848272, PMCID: PMC8121506, DOI: 10.1172/jci144239.Peer-Reviewed Original ResearchConceptsAgRP neuronsHypothalamic feeding circuitsInhibitory neurotransmitter GABAGhrelin administrationInhibitory toneAstrocytic responseMetabolic milieuProstaglandin E2Neurotransmitter GABANeuronal controlSynaptic plasticityGlial processesNeuronsNeural excitationMitochondrial adaptationsFood deprivationAstrocytesPerikaryaFeeding circuitRegion crucialFeedingObesityGABAExcitabilityChemogeneticsDrp1 is required for AgRP neuronal activity and feeding
Jin S, Yoon NA, Liu ZW, Song JE, Horvath TL, Kim JD, Diano S. Drp1 is required for AgRP neuronal activity and feeding. ELife 2021, 10: e64351. PMID: 33689681, PMCID: PMC7946429, DOI: 10.7554/elife.64351.Peer-Reviewed Original ResearchConceptsAgRP neuronal activityFatty acid oxidationAgRP neuronsNeuronal activityAgRP neuronal functionHypothalamic AgRP neuronsBody weight regulationMitochondrial fatty acid utilizationWhole-body energy homeostasisHypothalamic orexigenic agoutiFatty acid utilizationAcid oxidationFat massCKO miceNeuronal activationPeptide-1Body weightNeuronal functionOrexigenic agoutiEnergy homeostasisMitochondrial fissionSignificant decreaseEnergy expenditureNeuronsAcid utilizationAuthor Correction: AgRP neurons control compulsive exercise and survival in an activity-based anorexia model
Miletta MC, Iyilikci O, Shanabrough M, Šestan-Peša M, Cammisa A, Zeiss CJ, Dietrich MO, Horvath TL. Author Correction: AgRP neurons control compulsive exercise and survival in an activity-based anorexia model. Nature Metabolism 2021, 3: 288-288. PMID: 33495625, DOI: 10.1038/s42255-021-00351-5.Peer-Reviewed Original Research
2020
AgRP neurons control compulsive exercise and survival in an activity-based anorexia model
Miletta MC, Iyilikci O, Shanabrough M, Šestan-Peša M, Cammisa A, Zeiss CJ, Dietrich MO, Horvath TL. AgRP neurons control compulsive exercise and survival in an activity-based anorexia model. Nature Metabolism 2020, 2: 1204-1211. PMID: 33106687, DOI: 10.1038/s42255-020-00300-8.Peer-Reviewed Original ResearchConceptsAgRP neuronsActivity-based anorexia modelAgRP neuronal activityVivo fiber photometryFood-restricted miceFood-restricted animalsCompulsive exerciseAnorexia modelHypothalamic agoutiNeuropeptide YExercise volumeFood intakeMouse modelNeuronal activityFiber photometryDaily activationNeuronal circuitsPsychiatric conditionsAnorexia nervosaChemogenetic toolsNeuronsLong-term behavioral impactElevated fat contentVoluntary cessationFat content
2019
SUN-097 AgRP Neurons Determine Survival in Activity-Based Anorexia Model
Miletta M, Shanabrough M, Sestan-Pesa M, Varela L, Mancini G, Spadaro O, Zeiss C, Dixit V, Dietrich M, Horvath T. SUN-097 AgRP Neurons Determine Survival in Activity-Based Anorexia Model. Journal Of The Endocrine Society 2019, 3: sun-097. PMCID: PMC6553392, DOI: 10.1210/js.2019-sun-097.Peer-Reviewed Original ResearchNormal food intakeAgRP neuronsAnorexia nervosaFood intakeFood restrictionActivity-based anorexia (ABA) paradigmWeight lossPostnatal day 36Ad libitumPostnatal day 7Week old micePostnatal day 3Diphtheria toxinHigh mortality rateFed ad libitumAnorexia modelDTR miceHours animalsAd libitum foodNeuronal lossProtein (AgRP) neuronsArcuate nucleusNew neural circuitsPsychiatric illnessOld mice
2015
Mitochondria in Control of Hypothalamic Metabolic Circuits
Nasrallah C, Horvath T. Mitochondria in Control of Hypothalamic Metabolic Circuits. 2015, 186-202. DOI: 10.1002/9781119017127.ch8.Peer-Reviewed Original ResearchPOMC neuronsNutritional statusBody nutritional statusAgRP neuronsGhrelin increasesLeptin levelsFood intakeCentral regulationGlucose levelsMetabolic disordersNeuronal functionPrimary siteLipid metabolismMetabolic principlesMitochondrial dysfunctionNeuronsCessation of feedingBioenergetic adaptationImportant contributorMitochondrial dynamicsMetabolic circuitsHypothalamusDysfunctionSatietyIntakeAgRP Neurons Regulate Bone Mass
Kim JG, Sun BH, Dietrich MO, Koch M, Yao GQ, Diano S, Insogna K, Horvath TL. AgRP Neurons Regulate Bone Mass. Cell Reports 2015, 13: 8-14. PMID: 26411686, PMCID: PMC5868421, DOI: 10.1016/j.celrep.2015.08.070.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAnimalsArcuate Nucleus of HypothalamusBone DensityBone Diseases, MetabolicFemurGene Expression RegulationHomeostasisHypothalamusIon ChannelsLeptinMaleMiceMice, KnockoutMitochondrial ProteinsNeuronsNorepinephrinePhenotypePropranololReceptors, Adrenergic, betaReceptors, LeptinSignal TransductionSirtuin 1TibiaUncoupling Protein 2ConceptsAgRP neuronsCell-autonomous deletionSignificant regulatory roleAgRP neuronal functionBone massLeptin receptor deletionSkeletal bone metabolismTransgenic animalsRegulatory roleGene deletionBone homeostasisDeletionNeuronal functionPostnatal deletionSympathetic toneReceptor deletionArcuate nucleusLeptin actionBone metabolismSkeletal metabolismMultiple linesNeuronsMiceMetabolismCircuit integrityThe role of the hypothalamus in the maintenance of energy balance and peripheral glucose control
Varela L, Horvath T. The role of the hypothalamus in the maintenance of energy balance and peripheral glucose control. 2015, 529-537. DOI: 10.1002/9781118387658.ch36.Peer-Reviewed Original ResearchEnergy homeostasisPrevalence of obesityAnorectic hormonesAgRP neuronsHypothalamic POMCObese patientsGlucose controlGlucose homeostasisBody weightInsulin actionHormonal actionLeptinMajor targetInsulinHormoneBrainHomeostasisLatest findingsEnergy balanceSteady riseObesityPatientsHypothalamusPathwayPrevalenceHypothalamic Agrp Neurons Drive Stereotypic Behaviors beyond Feeding
Dietrich MO, Zimmer MR, Bober J, Horvath TL. Hypothalamic Agrp Neurons Drive Stereotypic Behaviors beyond Feeding. Cell 2015, 160: 1222-1232. PMID: 25748653, PMCID: PMC4484787, DOI: 10.1016/j.cell.2015.02.024.Peer-Reviewed Original ResearchConceptsHypothalamic AgRP neuronsAgRP neuronsNeuropeptidergic signalingReceptor signalingFunctional rolePotential therapeutic avenuesAgRP neuron activationStereotypic behaviorFeeding behaviorRepetitive behaviorsSignalingTherapeutic avenuesFood triggersAdult miceNervous systemDecreased anxietyNeuronsMinor effectActivationFood consumptionNeuron activationGoal-directed behaviorSensory informationFlexible goal-directed behaviorDisease
2014
O-GlcNAc Transferase Enables AgRP Neurons to Suppress Browning of White Fat
Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, Zhang K, Yin R, Wu J, Horvath TL, Yang X. O-GlcNAc Transferase Enables AgRP Neurons to Suppress Browning of White Fat. Cell 2014, 159: 306-317. PMID: 25303527, PMCID: PMC4509746, DOI: 10.1016/j.cell.2014.09.010.Peer-Reviewed Original ResearchConceptsAgRP neuronsFundamental cellular processesWhite fatN-acetylglucosamine (O-GlcNAc) modificationOrexigenic AgRP neuronsVoltage-dependent potassium channelsCellular processesGlcNAc transferaseDynamic physiological processesNuclear proteinsWhite adipose tissue browningPhysiological processesAdipose tissue browningDiet-induced obesityPhysiological relevanceTissue browningGenetic ablationBeige cellsEnergy metabolismInsulin resistanceNeuronal excitabilityPotassium channelsAdipose tissueCentral mechanismsNeuronsLeptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding
Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K, Gao Y, Garcia-Caceres C, Yi CX, Salmaso N, Vaccarino FM, Chowen J, Diano S, Dietrich MO, Tschöp MH, Horvath TL. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience 2014, 17: 908-910. PMID: 24880214, PMCID: PMC4113214, DOI: 10.1038/nn.3725.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell CountEatingExcitatory Postsynaptic PotentialsGlial Fibrillary Acidic ProteinHypothalamusImmunohistochemistryIn Situ HybridizationLeptinMaleMelanocortinsMiceMice, KnockoutMicroscopy, ElectronNerve NetNeuronsPrimary Cell CulturePro-OpiomelanocortinPulmonary Gas ExchangeReal-Time Polymerase Chain ReactionRNA, MessengerSignal Transduction
2013
Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity
Dietrich MO, Liu ZW, Horvath TL. Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity. Cell 2013, 155: 188-199. PMID: 24074868, PMCID: PMC4142434, DOI: 10.1016/j.cell.2013.09.004.Peer-Reviewed Original ResearchConceptsMitochondrial dynamicsEnergy metabolismCell-type specificCellular energy metabolismWhole-body energy metabolismKey organellesMitofusin 1Mitofusin 2High-fat dietMitochondria sizeAgRP neuronsMfn1Anorexigenic pro-opiomelanocortin (POMC) neuronsAgRP neuronal activityKnockout miceMetabolismPro-opiomelanocortin (POMC) neuronsFusion mechanismDiet-Induced ObesityMitofusinsOverfed stateImportant roleCellsDynamic changesOrganelles
2012
Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis
Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Reports 2012, 13: 1079-1086. PMID: 23146889, PMCID: PMC3512417, DOI: 10.1038/embor.2012.174.Peer-Reviewed Original ResearchConceptsGlucose homeostasisEnergy homeostasisPrevalence of obesityWhole-body energy homeostasisBody energy homeostasisAnorectic hormonesAgRP neuronsObese patientsProtein (AgRP) neuronsCentral effectsHypothalamic proopiomelanocortinBody weightInsulin actionLeptinHormonal actionMajor targetInsulin pathwayHomeostasisInsulinNeuronsHormoneBrainLatest findingsEnergy balanceSteady riseLimitations in anti-obesity drug development: the critical role of hunger-promoting neurons
Dietrich MO, Horvath TL. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nature Reviews Drug Discovery 2012, 11: 675-691. PMID: 22858652, DOI: 10.1038/nrd3739.Peer-Reviewed Original ResearchConceptsNPY/AgRP neuronsNegative energy balanceSevere side effectsAgRP neuronsPOMC neuronsPositive energy balanceChronic disordersPeripheral tissuesReactive oxygen speciesSide effectsLong-term positive energy balanceCalorie restrictionAnti-obesity drug developmentBehavioral interventionsIntense behavioral interventionsPro-opiomelanocortin (POMC) neuronsChronic metabolic disorderLong-term treatmentWhite adipose tissueAlternative therapeutic approachAnti-obesity therapiesPromotion of satietyNew drug therapiesPopulations of neuronsHigher brain functionsAgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors
Dietrich MO, Bober J, Ferreira JG, Tellez LA, Mineur YS, Souza DO, Gao XB, Picciotto MR, Araújo I, Liu ZW, Horvath TL. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nature Neuroscience 2012, 15: 1108-1110. PMID: 22729177, PMCID: PMC3411867, DOI: 10.1038/nn.3147.Peer-Reviewed Original Research