Yale Medical Physics Residency Training Program

The medical physics residency training program in the Department of Therapeutic Radiology at Yale-New Haven Medical Center and Yale University School of Medicine was established in 2011. Our program is designed to prepare candidates with an advanced degree in medical physics or a closely related field for a professional career in clinical and academic radiation oncology physics. The program takes advantage of the academic and clinical strengths and resources of Yale University School of Medicine, the Yale Comprehensive Cancer Center, and the state-of-the-art Smilow Cancer Hospital at Yale-New Haven to provide residents with a comprehensive clinical and academic training in all areas of radiation oncology physics. The program is fully accredited by the Commission on Accreditation of Medical Physics Educational Programs (CAMPEP) since 2014.

Description of the Program

The program is designed in accordance with the CAMPEP Standards of Radiation Oncology Residency Education. It provides a minimum of two years of structured clinical training that covers all areas of radiation oncology physics plus one year in clinical research and development. Upon completion of the program, the residents should be eligible to take the American Board of Radiology (ABR) certification examination in Therapeutic Medical Physics.

The training program normally begins on July 1st  and ends in June three years later. It consists of four main required components: attendance of radiation oncology related conferences, seminars, and didactic courses; hands-on training and service in structured clinical rotations; seminar presentations; and participation in clinical research and development projects.

Upon entering the program, the residents will participate in a four-week orientation designed to help the residents to get acquainted with the normal department operation, the requirements and expectations of the residency program, hospital policy and procedures on patient care and professional conduct, and safety practice on working with radiation producing equipment among other related topics. During this time the resident should develop an overall understanding of the medical physicist's role in the clinic.

Following the orientation, the residents will start regular attendance to the didactic courses offered in our department (Radiation Oncology Physics and Radiation Biology in year one, Clinical Radiation Oncology in year two) as well as the weekly departmental chart rounds, grand rounds, medical physics lecture series, and other relevant clinical and research seminars.

In parallel to didactic activities, the residents will receive structured clinical training by going through 9 clinical rotations. Each rotation is led by one (or more) Rotation Adviser(s). The residents will be working with the Rotation Adviser(s) and/or board certified medical physicists assigned by the Rotation Adviser(s) to learn specific training topics and perform clinical tasks under their supervision. At the end of each rotation, the Rotation Adviser(s), in consultation with the supervising physicists, will provide a formal evaluation of the resident's performance in meeting the specific training objectives. The topic(s) and starting time for clinical research and development are determined on a case-by-case basis by Program Director in consultation with the resident and prospective faculty advisers, taking into account the resident's clinical background, research interest and expertise, and the scope of the project(s).

The duties associated with the clinical services during the first year of the residency will be under close supervision. Duties performed for the clinical services in the second and third year of residency will be under reduced supervision but all clinical tasks must be approved by a board-certified supervising physicist or Rotation Adviser. A major goal for the resident during the later stage of residency is to develop independent clinical and critical thinking skills as well as confidence in making clinical decisions. Additional literature reading and topical report assignments may be given during this time to strengthen theoretical understanding of various clinical procedures.

During the residency, the residents will be exposed to a full range of clinical services offered at Yale-New Haven Medical Center: From conventional radiation therapy to special procedures such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), stereotactic body radiation therapy (SBRT), total body irradiation (TBI), and total skin electron therapy (TSET) using state of the art linear accelerators with onboard KV-, MV-, and cone beam computed tomography (CBCT)-imaging, cranial stereotactic radiosurgery (SRS) using the latest Gamma Knife® ICON unit; and a full suite of low dose-rate (LDR) and high dose-rate (HDR) brachytherapy procedures.

The department and its affiliates currently houses 12 linear accelerators from two major vendors, 1 Gamma Knife® ICON, 1 orthovoltage therapy unit, 6 CT simulators, 2 HDR afterloaders, 4 different types of major treatment planning systems (Eclipse, Monaco, iPlan, and GammaPlan), as well as cloud-hosted Mosaiq information management system. The Radiation Physics Division has a wide array radiation detection and measurement equipment for acceptance testing, commissioning, special radiation dosimetry and on-going quality assurance checks.

Residency Program Statistics

Destination of Graduates
Graduation Year Number of Applications Number Offered Admission Number Enrolled in Program Number Completing Program Clinical Industry Academic Additional Education Still Seeking Position Other
*Our program funded two resident slots from 2012 to 2018. During this period, one of the resident enrolled in 2012 and the resident enrolled in 2015 elected to take on the third-year option offered by the program, resulting in no openings in the 2013 and 2017 academic years and no graduates in the 2013, 2017, and 2019 academic years.
2012 26 2 2 0 0 0 0 0 0 0
2013 No Opening* 0 0 0 0 0 0 0 0 0
2014 62 1 1 1 1 0 0 0 0 0
2015 195 1 1 1 0 0 1 0 0 0
2016 95 1 1 1 0 0 1 0 0 0
2017 No Opening* 0 0 0 0 0 0 0 0 0
2018 92 2 2 2 0 0 1 0 0 1
2019 55 1 1 0 0 0 0 0 0 0

Prospective Applicants

Applicants to the residency program should have a CAMPEP-accredited Ph.D. degree in Medical Physics or in a related field (e.g. physics, engineering) with additional CAMPEP required medical physics coursework. Information on the specific prerequisites for medical physics residency can found on the CAMPEP website. We currently do not offer coursework to satisfy CAMPEP's didactic prerequisites. Our program participates in the national medical physics matching program and accept AAPM common applications. New openings are generally posted in the autumn with a December application deadline. Please watch AAPM career service, MedPhys list server and our departmental website for specific postings. Additional application information can be found under Eligibility Tab.