2024
Multi-omics approaches for biomarker discovery in predicting the response of esophageal cancer to neoadjuvant therapy: A multidimensional perspective
Yang Z, Guan F, Bronk L, Zhao L. Multi-omics approaches for biomarker discovery in predicting the response of esophageal cancer to neoadjuvant therapy: A multidimensional perspective. Pharmacology & Therapeutics 2024, 254: 108591. PMID: 38286161, DOI: 10.1016/j.pharmthera.2024.108591.Peer-Reviewed Original ResearchConceptsPathological complete responseNeoadjuvant chemoradiotherapyEsophageal cancerLocally advanced esophageal cancerPathological complete response patientsAdvanced esophageal cancerStandard treatment strategyPredicting treatment responsePredicting nCRT responseMulti-omics dataMulti-omicsComplete responseNeoadjuvant therapyChemoradiation responseNCRT responsePredictive biomarkersSurvival outcomesActive surveillanceTreatment responsePlanned surgeryEC patientsTreatment strategiesMulti-omics approachImproved biomarkersOrgan preservation
2022
Looking on the horizon; potential and unique approaches to developing radiation countermeasures for deep space travel
Bokhari R, Beheshti A, Blutt S, Bowles D, Brenner D, Britton R, Bronk L, Cao X, Chatterjee A, Clay D, Courtney C, Fox D, Gaber M, Gerecht S, Grabham P, Grosshans D, Guan F, Jezuit E, Kirsch D, Liu Z, Maletic-Savatic M, Miller K, Montague R, Nagpal P, Osenberg S, Parkitny L, Pierce N, Porada C, Rosenberg S, Sargunas P, Sharma S, Spangler J, Tavakol D, Thomas D, Vunjak-Novakovic G, Wang C, Whitcomb L, Young D, Donoviel D. Looking on the horizon; potential and unique approaches to developing radiation countermeasures for deep space travel. Life Sciences In Space Research 2022, 35: 105-112. PMID: 36336356, DOI: 10.1016/j.lssr.2022.08.003.Peer-Reviewed Original ResearchTargeting hippocampal neurogenesis to protect astronauts’ cognition and mood from decline due to space radiation effects
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young D, Gaber M, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts’ cognition and mood from decline due to space radiation effects. Life Sciences In Space Research 2022, 35: 170-179. PMID: 36336363, DOI: 10.1016/j.lssr.2022.07.007.Peer-Reviewed Original Research
2020
Dosimetric and Radiobiological Comparison of Five Techniques for Postmastectomy Radiotherapy with Simultaneous Integrated Boost
Tang D, Liang Z, Guan F, Yang Z. Dosimetric and Radiobiological Comparison of Five Techniques for Postmastectomy Radiotherapy with Simultaneous Integrated Boost. BioMed Research International 2020, 2020: 9097352. PMID: 32775448, PMCID: PMC7391102, DOI: 10.1155/2020/9097352.Peer-Reviewed Original ResearchConceptsNormal tissue complication probabilitySimultaneous integrated boostHighest normal-tissue complication probabilityPostmastectomy radiotherapyIntegrated boostLeft-sided breast cancer treatmentComplication probabilityHybrid intensity-modulated radiotherapyLeft-sided breast cancerSimilar dosimetric resultsSuperior dose sparingBetter dose coverageBetter conformity indexBreast cancer treatmentIntensity-modulated radiotherapyOAR mean doseContralateral breastMean doseTD plansBreast cancerConformity indexRadiobiological comparisonDose sparingDose coverageClinical practiceExploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns
Ma D, Bronk L, Kerr M, Sobieski M, Chen M, Geng C, Yiu J, Wang X, Sahoo N, Cao W, Zhang X, Stephan C, Mohan R, Grosshans DR, Guan F. Exploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Scientific Reports 2020, 10: 3199. PMID: 32081928, PMCID: PMC7035246, DOI: 10.1038/s41598-020-60246-5.Peer-Reviewed Original ResearchConceptsIntensity-modulated proton therapyLow-energy beamsIntensity modulation patternCurrent treatment planProton therapyBiological effectsDelivery strategiesTarget doseTherapeutic indexTreatment planHigh-energy beamsEffective doseEnhanced biological effectClinical potentialTherapyCancer cellsDoseBragg peak
2019
A Monte Carlo study of pinhole collimated Cerenkov luminescence imaging integrated with radionuclide treatment
Geng C, Ai Y, Tang X, Shu D, Gong C, Guan F. A Monte Carlo study of pinhole collimated Cerenkov luminescence imaging integrated with radionuclide treatment. Physical And Engineering Sciences In Medicine 2019, 42: 481-487. PMID: 30830649, DOI: 10.1007/s13246-019-00744-7.Peer-Reviewed Original Research
2018
A mechanistic relative biological effectiveness model-based biological dose optimization for charged particle radiobiology studies
Guan F, Geng C, Carlson DJ, H D, Bronk L, Gates D, Wang X, Kry SF, Grosshans D, Mohan R. A mechanistic relative biological effectiveness model-based biological dose optimization for charged particle radiobiology studies. Physics In Medicine And Biology 2018, 64: 015008. PMID: 30523805, DOI: 10.1088/1361-6560/aaf5df.Peer-Reviewed Original ResearchPatterns of Local-Regional Failure After Intensity Modulated Radiation Therapy or Passive Scattering Proton Therapy With Concurrent Chemotherapy for Non-Small Cell Lung Cancer
Yang P, Xu T, Gomez DR, Deng W, Wei X, Elhalawani H, Jin H, Guan F, Mirkovic D, Xu Y, Mohan R, Liao Z. Patterns of Local-Regional Failure After Intensity Modulated Radiation Therapy or Passive Scattering Proton Therapy With Concurrent Chemotherapy for Non-Small Cell Lung Cancer. International Journal Of Radiation Oncology • Biology • Physics 2018, 103: 123-131. PMID: 30165127, DOI: 10.1016/j.ijrobp.2018.08.031.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerInternal target volumePlanning target volumeCell lung cancerLarge tumorsRegional failureMarginal failureLocal failureLung cancerSmall tumorsCox proportional hazards analysisTarget volumeLocal-regional failureOnly independent predictorOverall survival rateProportional hazards analysisProton therapyComputed tomography simulationPassive Scattering Proton TherapyConcurrent chemotherapyLocoregional failureFavorable survivalIndependent predictorsTumor controlTomography scanPower-law relationship in the long-tailed sections of proton dose distributions
Jiang B, Wang X, Zhang Y, Guan F, Li Y, Wang X, Zhu RX, Zhang X. Power-law relationship in the long-tailed sections of proton dose distributions. Scientific Reports 2018, 8: 10413. PMID: 29991734, PMCID: PMC6039508, DOI: 10.1038/s41598-018-28683-5.Peer-Reviewed Original ResearchConceptsIndirect impact mechanismMathematical modelDose distributionPower-law exponentLateral dose distributionProton dose distributionsStatistical methodsImpact probabilityPower law relationshipDirect impact mechanismHalo portionDose profilesDose depositionExperimental dataLong tailProbabilityDistributionProton impactExponentInvestigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy.
Shao W, Tang X, Bai Y, Shu D, Geng C, Gong C, Guan F. Investigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy. Journal Of Cancer Research And Therapeutics 2018, 14: 184-195. PMID: 29516984, DOI: 10.4103/jcrt.jcrt_1349_16.Peer-Reviewed Original ResearchConceptsT transverse magnetic fieldBeam energyCarbon ion beamsTherapeutic beamTransverse magnetic fieldMagnetic fieldDose perturbationsDose perturbation effectsIon beamMagnetic resonance imaging-guided radiotherapyHigher beam energiesUniform magnetic fieldWater-air interfaceAir-tissue interfacePhoton beamsRadiation fieldPerturbation effectsBragg peakProper energyBeamBeam typeDose distributionEnergyProtonsRadiotherapy methods
2017
Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams
Patel D, Bronk L, Guan F, Peeler CR, Brons S, Dokic I, Abdollahi A, Rittmüller C, Jäkel O, Grosshans D, Mohan R, Titt U. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Medical Physics 2017, 44: 6061-6073. PMID: 28880368, DOI: 10.1002/mp.12568.Peer-Reviewed Original ResearchRadiobiological issues in proton therapy
Mohan R, Peeler CR, Guan F, Bronk L, Cao W, Grosshans DR. Radiobiological issues in proton therapy. Acta Oncologica 2017, 56: 1367-1373. PMID: 28826292, PMCID: PMC5842809, DOI: 10.1080/0284186x.2017.1348621.Peer-Reviewed Original ResearchConceptsClinical practiceClinical evidenceProton therapyProton relative biological effectivenessClear clinical evidenceCurrent clinical practiceRelative biological effectivenessIntensity-modulated proton therapyMore patientsTherapeutic ratioUnforeseen toxicityTreatment planTherapyVariable relative biological effectivenessEffective dose distributionRadiation dosePatientsDoseCell typesEstimation of doseDose distributionParticle therapyRadiobiological issuesRBE variabilityEvidence
2015
A Monte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding
Geng C, Tang X, Gong C, Guan F, Johns J, Shu D, Chen D. A Monte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding. Journal Of Radiological Protection 2015, 35: 777-788. PMID: 26484984, DOI: 10.1088/0952-4746/35/4/777.Peer-Reviewed Original ResearchConceptsGalactic cosmic radiationSolar particle eventsMagnetic fieldActive shielding techniqueToroidal magnetic fieldMonte Carlo toolkitMagnetic field strengthGCR particlesParticle eventsCosmic radiationParticle fluenceSPE protonsRadiation fieldMonte CarloPassive shielding techniquesField strengthDose equivalentAdditional shieldingShielding techniqueRadiation safety assessmentActive shieldingAnthropomorphic phantomRadiation protectionFieldShieldingAnalysis of the track‐ and dose‐averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code
Guan F, Peeler C, Bronk L, Geng C, Taleei R, Randeniya S, Ge S, Mirkovic D, Grosshans D, Mohan R, Titt U. Analysis of the track‐ and dose‐averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Medical Physics 2015, 42: 6234-6247. PMID: 26520716, PMCID: PMC4600086, DOI: 10.1118/1.4932217.Peer-Reviewed Original ResearchCalculations of S values and effective dose for the radioiodine carrier and surrounding individuals based on Chinese hybrid reference phantoms using the Monte Carlo technique
Geng C, Tang X, Qian W, Guan F, Johns J, Yu H, Gong C, Shu D, Chen D. Calculations of S values and effective dose for the radioiodine carrier and surrounding individuals based on Chinese hybrid reference phantoms using the Monte Carlo technique. Journal Of Radiological Protection 2015, 35: 707-717. PMID: 26344387, DOI: 10.1088/0952-4746/35/3/707.Peer-Reviewed Original ResearchGEANT4 calculations of neutron dose in radiation protection using a homogeneous phantom and a Chinese hybrid male phantom
Geng C, Tang X, Guan F, Johns J, Vasudevan L, Gong C, Shu D, Chen D. GEANT4 calculations of neutron dose in radiation protection using a homogeneous phantom and a Chinese hybrid male phantom. Radiation Protection Dosimetry 2015, 168: 433-440. PMID: 26156875, DOI: 10.1093/rpd/ncv364.Peer-Reviewed Original ResearchConceptsNeutron dose calculationsDepth dose distributionsHomogeneous phantomThermal energy rangeS-matrix correctionsClose simulation resultsPhysics listsGeant4 calculationsNeutron energyEnergy rangeThermal scatteringNeutron doseRadiation protectionGeant4Conversion coefficientsMCNP5Dose conversion coefficientsDose distributionDose calculationsMatrix correctionMale phantomPhantomCalculationsEnergyFluenceSpatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy
Guan F, Bronk L, Titt U, Lin SH, Mirkovic D, Kerr MD, Zhu XR, Dinh J, Sobieski M, Stephan C, Peeler CR, Taleei R, Mohan R, Grosshans DR. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Scientific Reports 2015, 5: 9850. PMID: 25984967, PMCID: PMC4650781, DOI: 10.1038/srep09850.Peer-Reviewed Original ResearchChemoradiation therapy using cyclopamine-loaded liquid–lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles
You J, Zhao J, Wen X, Wu C, Huang Q, Guan F, Wu R, Liang D, Li C. Chemoradiation therapy using cyclopamine-loaded liquid–lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. Journal Of Controlled Release 2015, 202: 40-48. PMID: 25637565, PMCID: PMC4394992, DOI: 10.1016/j.jconrel.2015.01.031.Peer-Reviewed Original ResearchConceptsCombination therapyHigher antitumor cytotoxicityMurine breast cancerMouse xenograft modelCell linesDesirable pharmacokinetic propertiesChemoradiation therapyTumor sizeTumor responseMouse survivalPancreatic cancerAntitumor cytotoxicitySystemic administrationBreast cancerIntravenous injectionPreclinical studiesTumor relapseRadiation therapyXenograft modelIntratumoral injectionAdenocarcinoma modelTumor growthLower clonogenicityCell responsesTherapy