2023
Characterization of GafchromicTM EBT4 film with clinical kV/MV photons and MeV electrons
Guan F, Chen H, Draeger E, Li Y, Aydin R, Tien C, Chen Z. Characterization of GafchromicTM EBT4 film with clinical kV/MV photons and MeV electrons. Precision Radiation Oncology 2023, 7: 84-91. DOI: 10.1002/pro6.1204.Peer-Reviewed Original ResearchX-ray beamMeV electron beamMV photon beamElectron beamMV photonsBeam energyMeV electronsPhoton beamsEnergy dependenceKilovoltage x-ray beamsMinimal energy dependenceClinical photonPhotonsBeamRadiation typesMeVElectronsDependence experimentsFilmsDose-response dependenceResponse dependenceDependenceEnergyNoise ratioEBT3Dosimetric response of Gafchromic™ EBT‐XD film to therapeutic protons
Guan F, Wang X, Yang M, Draeger E, Han D, Iga K, Guo F, Perles L, Li Y, Sahoo N, Mohan R, Chen Z. Dosimetric response of Gafchromic™ EBT‐XD film to therapeutic protons. Precision Radiation Oncology 2023, 7: 15-26. PMID: 37868341, PMCID: PMC10586355, DOI: 10.1002/pro6.1187.Peer-Reviewed Original ResearchLinear energy transferEBT-XD filmsTherapeutic protonsFilm calibrationProton linear energy transferUltra-high Dose Rate FLASH RadiotherapyDynamic dose rangeMV photon beamDose-averaged LET valuesDose rate dependenceProton beamlineProton beamPhoton beamsFLASH beamSpot scanning proton beamsDosimetric responseLET dependenceFLASH radiotherapyHigh-dose applicationFilm responseLET valuesEnergy transferBeamProtonsGafchromic
2020
Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques
Bronk L, Guan F, Patel D, Ma D, Kroger B, Wang X, Tran K, Yiu J, Stephan C, Debus J, Abdollahi A, Jäkel O, Mohan R, Titt U, Grosshans DR. Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques. Cancers 2020, 12: 3658. PMID: 33291477, PMCID: PMC7762185, DOI: 10.3390/cancers12123658.Peer-Reviewed Original ResearchHeidelberg Ion Beam Therapy CenterRelative biological effectivenessCarbon ionsDose-mean lineal energyDose-averaged linear energy transferBiological effectivenessLinear energy transferMonte Carlo systemHelium ionsParticle beamsLineal energyBeam pathBragg peakMaximum relative biological effectivenessEnergy transferProtonsHeliumIonsTherapy CenterBeamExperimental platformSpatial distributionEnergyExperimental resultsSub
2018
Physical parameter optimization scheme for radiobiological studies of charged particle therapy
Geng C, Gates D, Bronk L, Ma D, Guan F. Physical parameter optimization scheme for radiobiological studies of charged particle therapy. Physica Medica 2018, 51: 13-21. PMID: 30278981, PMCID: PMC6173200, DOI: 10.1016/j.ejmp.2018.06.001.Peer-Reviewed Original ResearchConceptsIon beamParticle therapyPhysical quantitiesDose-averaged linear energy transferC-ion beamsLinear energy transferBiological dose optimizationParticle beamsProton beamBragg curveBragg peakWhole target regionBeamCorresponding physical dataEnergy transferProtonsMonte Carlo simulationsAppropriate biophysical modelSpatial distributionSOBPRadiobiological studiesCarlo simulationsDose spreadIonsLETInvestigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy.
Shao W, Tang X, Bai Y, Shu D, Geng C, Gong C, Guan F. Investigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy. Journal Of Cancer Research And Therapeutics 2018, 14: 184-195. PMID: 29516984, DOI: 10.4103/jcrt.jcrt_1349_16.Peer-Reviewed Original ResearchConceptsT transverse magnetic fieldBeam energyCarbon ion beamsTherapeutic beamTransverse magnetic fieldMagnetic fieldDose perturbationsDose perturbation effectsIon beamMagnetic resonance imaging-guided radiotherapyHigher beam energiesUniform magnetic fieldWater-air interfaceAir-tissue interfacePhoton beamsRadiation fieldPerturbation effectsBragg peakProper energyBeamBeam typeDose distributionEnergyProtonsRadiotherapy methods
2014
SU‐E‐T‐491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique
Randeniya S, Mirkovic D, Titt U, Guan F, Mohan R. SU‐E‐T‐491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique. Medical Physics 2014, 41: 339-339. DOI: 10.1118/1.4888824.Peer-Reviewed Original ResearchAbsolute dose valuesPA beamDose distributionEnergy deposition dataCalibration factorMC simulationsDose calculationsDose valuesMC dose calculationsAbsolute dose distributionsIon pairsDose monitorMonte Carlo techniqueBeamOblique beamsAbsolute doseMonte Carlo simulationsProtonsProton therapyExperimental measurementsCarlo techniqueCarlo simulationsCalculationsExperimental methodsMC techniqueTH‐A‐19A‐05: Modeling Physics Properties and Biologic Effects Induced by Proton and Helium Ions
Taleei R, Titt U, Peeler C, Guan F, Mirkovic D, Grosshans D, Mohan R. TH‐A‐19A‐05: Modeling Physics Properties and Biologic Effects Induced by Proton and Helium Ions. Medical Physics 2014, 41: 534-534. DOI: 10.1118/1.4889538.Peer-Reviewed Original ResearchMonte Carlo codeFragmentation cross sectionsHelium ionsBragg peakCarlo codeCross sectionsGeneral purpose Monte Carlo codeLight ionsMicrodosimetric parametersProton beamEnergy spectrumCarbon ionsBragg curveDepth dosePhysics propertiesWater phantomPhysical propertiesRBE increasesProtonsMonte Carlo simulationsDose distributionFLUKABeamIonsCurve calculations
2013
SU‐E‐T‐48: Relative Proton Stopping Power Ratio Database for Common Dosimetry Phantom Materials
Kerr M, Dhanesar S, Guan F, Taylor M, Zhu X, Gillin M, Amos R, Sahoo N. SU‐E‐T‐48: Relative Proton Stopping Power Ratio Database for Common Dosimetry Phantom Materials. Medical Physics 2013, 40: 214-214. DOI: 10.1118/1.4814483.Peer-Reviewed Original ResearchSU‐E‐T‐502: In Search of the Optimum Ion for Radiotherapy
Guan F, Titt U, Bangert M, Mohan R. SU‐E‐T‐502: In Search of the Optimum Ion for Radiotherapy. Medical Physics 2013, 40: 320-320. DOI: 10.1118/1.4814931.Peer-Reviewed Original ResearchFragmentation tailC ionsBragg peakGeant4 Monte Carlo toolkitMonte Carlo toolkitC-ion beamsLateral penumbraPeak dose ratioNarrow Bragg peaksMonoenergetic beamsTypes of ionsIon beamEnergy dependenceBroad beamLET distributionsPristine beamWater phantomNuclear fragmentsBeamDose contributionSpatial doseDifferent ionsProtonsSmaller penumbraIons