2010
Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated Demyelination
Wilkins A, Kondo Y, Song J, Liu S, Compston A, Black J, Waxman S, Duncan I. Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated Demyelination. Journal Of Neuropathology & Experimental Neurology 2010, 69: 1256-1269. PMID: 21107138, DOI: 10.1097/nen.0b013e3181ffc317.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsChronic DiseaseDemyelinating DiseasesDisease Models, AnimalDisease ProgressionMicrotubulesNerve DegenerationRatsRats, TransgenicTime FactorsConceptsCentral nervous systemAxonal lossAxonal degenerationAxonal pathologyTrophic supportEarly axonal lossProgressive axonal lossProgressive axonal degenerationWhite matter tractsTaiep mutant ratNerve countsWild-type controlsChronic demyelinationNeurologic disabilityMyelin lossSignificant inflammationRat modelOligodendrocyte dysfunctionImmunohistochemical analysisTaiep ratsNervous systemCNS regionsAxonal transportMutant ratsOligodendrocyte lineage
2004
Sodium channel blockers and axonal protection in neuroinflammatory disease
Waxman S. Sodium channel blockers and axonal protection in neuroinflammatory disease. Brain 2004, 128: 5-6. PMID: 15596795, DOI: 10.1093/brain/awh353.Peer-Reviewed Original Research
2000
Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000.
Waxman S, Dib-Hajj S, Cummins T, Black J. Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000. Brain Research 2000, 886: 5-14. PMID: 11119683, DOI: 10.1016/s0006-8993(00)02774-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSodium channel gene expressionSodium channel geneChannel gene expressionChannel genesGene expressionPost-transcriptional levelNormal nervous systemSodium channel expressionSodium channelsChannel expressionMolecular plasticityGenesDynamic expressionCell membraneHypothalamic magnocellular neurosecretory neuronsDifferent repertoiresMultiple sclerosisNervous systemTherapeutic opportunitiesSodium channel subtypesExpressionElectrogenic propertiesRegulationChannel subtypesDysregulationDo ‘demyelinating’ diseases involve more than myelin?
Waxman S. Do ‘demyelinating’ diseases involve more than myelin? Nature Medicine 2000, 6: 738-739. PMID: 10888913, DOI: 10.1038/77450.Peer-Reviewed Original Research
1998
Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination
Imaizumi T, Kocsis J, Waxman S. Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination. Brain Research 1998, 779: 292-296. PMID: 9473700, DOI: 10.1016/s0006-8993(97)01171-2.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsDemyelinating DiseasesFemaleHypoxiaNeural ConductionRatsRats, WistarSpinal Cord DiseasesConceptsCompound action potentialDorsal columnsSpinal cordAction potentialsWhite matterSpinal cord dorsal columnAdult rat spinal cordAdult spinal cordRat spinal cordMin of reoxygenationAdult white matterAction potential conductionControl ratsFocal demyelinationAnoxic injurySupramaximal stimulationOnset of anoxiaAdult ratsDemyelinationPotential conductionCordX-irradiationRatsGreater recoveryOnset
1995
Expression of sodium channel α- and β-subunits in the nervous system of themyelin-deficient rat
Felts P, Black J, Waxman S. Expression of sodium channel α- and β-subunits in the nervous system of themyelin-deficient rat. Brain Cell Biology 1995, 24: 654-666. PMID: 7500121, DOI: 10.1007/bf01179816.Peer-Reviewed Original ResearchConceptsSodium channel αMale littermatesSubtype-specific riboprobesDorsal root gangliaChannel αNormal male littermatesSodium channel subunitsUnaffected male littermatesDays of ageAdult expression patternRoot gangliaSpinal cordExpression patternsAdult ratsNervous systemUnaffected littermatesSodium channelsLittermatesPattern of expressionChannel subunitsRatsGreater expressionSitu hybridization techniqueUnaffected animalsPrevious reports
1993
Peripheral nerve abnormalities in multiple sclerosis
Waxman S. Peripheral nerve abnormalities in multiple sclerosis. Muscle & Nerve 1993, 16: 1-5. PMID: 8380899, DOI: 10.1002/mus.880160102.Peer-Reviewed Original Research
1989
Demyelination in spinal cord injury
Waxman S. Demyelination in spinal cord injury. Journal Of The Neurological Sciences 1989, 91: 1-14. PMID: 2664092, DOI: 10.1016/0022-510x(89)90072-5.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCord injuryDemyelinated axonsFunctional recoveryCompressive spinal cord injuryAbsence of remyelinationRecovery of conductionRecovery of functionSmall-diameter axonsModification of conductionHemorrhagic necrosisPathophysiological basisClinical criteriaComplete transectionSchwann cellsDemyelinationDiameter axonsAction potentialsInjuryDemyelinated fibersAxonsRemyelinationNeurophysiological evidencePhysiological studiesTransection
1987
Molecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases.
Waxman S. Molecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases. Proceedings Of The Association For Research In Nervous And Mental Disease 1987, 65: 7-37. PMID: 2455313.Peer-Reviewed Original Research
1982
Membranes, Myelin, and the Pathophysiology of Multiple Sclerosis
Waxman S. Membranes, Myelin, and the Pathophysiology of Multiple Sclerosis. New England Journal Of Medicine 1982, 306: 1529-1533. PMID: 7043271, DOI: 10.1056/nejm198206243062505.Peer-Reviewed Original Research
1981
Basic and clinical electrophysiology of demyelinating diseases.
Ritchie J, Waxman S, Waksman B. Basic and clinical electrophysiology of demyelinating diseases. Neurology 1981, 31: 1308-10. PMID: 6287348, DOI: 10.1212/wnl.31.10.1308.Peer-Reviewed Original ResearchElectrophysiology of demyelinating diseases: future directions and questions.
Waxman S, Ritchie J. Electrophysiology of demyelinating diseases: future directions and questions. Advances In Neurology 1981, 31: 511-13. PMID: 6275675.Peer-Reviewed Original ResearchCellular aspects of conduction in myelinated nerve fibers in relation to clinical deficit.
Waxman S. Cellular aspects of conduction in myelinated nerve fibers in relation to clinical deficit. Progress In Clinical And Biological Research 1981, 52: 1-15. PMID: 7232439.Peer-Reviewed Original ResearchPlasticity in the ontogeny and pathophysiology of myelinated fibers.
Waxman S. Plasticity in the ontogeny and pathophysiology of myelinated fibers. Advances In Neurology 1981, 31: 69-92. PMID: 7325049.Peer-Reviewed Original Research
1980
Remyelination following viral‐induced demyelination: Ferric ion—ferrocyanide staining of nodes of ranvier within the CNS
Weiner L, Waxman S, Stohlman S, Kwan A. Remyelination following viral‐induced demyelination: Ferric ion—ferrocyanide staining of nodes of ranvier within the CNS. Annals Of Neurology 1980, 8: 580-583. PMID: 6260010, DOI: 10.1002/ana.410080606.Peer-Reviewed Original ResearchAnimalsDemyelinating DiseasesMiceMurine hepatitis virusRanvier's NodesRegenerationSpinal CordVirus DiseasesReorganization of the Axon Membrane in Demyelinated Peripheral Nerve Fibers: Morphological Evidence
Foster R, Whalen C, Waxman S. Reorganization of the Axon Membrane in Demyelinated Peripheral Nerve Fibers: Morphological Evidence. Science 1980, 210: 661-663. PMID: 6159685, DOI: 10.1126/science.6159685.Peer-Reviewed Original ResearchLysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Electron-microscopic observations
Foster R, Kocsis J, Malenka R, Waxman S. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Electron-microscopic observations. Journal Of The Neurological Sciences 1980, 48: 221-231. PMID: 7431040, DOI: 10.1016/0022-510x(80)90202-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain DiseasesCorpus CallosumDemyelinating DiseasesFemaleLysophosphatidylcholinesMicroscopy, ElectronRabbitsConceptsCorpus callosumLysophosphatidyl cholineFocal demyelinating lesionsCentral nervous systemDemyelinating lesionsLPC injectionDemyelinated axonsFocal demyelinationElectron microscopic examinationElectrophysiological studiesNervous systemElectrophysiological controlEarly signsCallosumAxonsDemyelinationInjectionElectron microscopic observationsRemyelinationPressure injectionLesions
1979
Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Light-microscopic observations
Waxman S, Kocsis J, Nitta K. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Light-microscopic observations. Journal Of The Neurological Sciences 1979, 44: 45-53. PMID: 512691, DOI: 10.1016/0022-510x(79)90221-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCorpus CallosumDemyelinating DiseasesDisease Models, AnimalFemaleLysophosphatidylcholinesRabbits
1978
Prerequisites for conduction in demyelinated fibers.
Waxman S. Prerequisites for conduction in demyelinated fibers. Neurology 1978, 28: 27-33. PMID: 568749, DOI: 10.1212/wnl.28.9_part_2.27.Peer-Reviewed Original ResearchDemyelination of Sternarchus electrocyte fibers by injection of diphtheria toxin
Quick D, Waxman S. Demyelination of Sternarchus electrocyte fibers by injection of diphtheria toxin. Journal Of The Neurological Sciences 1978, 35: 235-241. PMID: 632832, DOI: 10.1016/0022-510x(78)90006-0.Peer-Reviewed Original Research