1999
The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matter
Imaizumi T, Kocsis J, Waxman S. The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matter. Brain Research 1999, 817: 84-92. PMID: 9889329, DOI: 10.1016/s0006-8993(98)01214-1.Peer-Reviewed Original ResearchConceptsVoltage-gated Ca2Spinal cord axonsAnoxic injuryDorsal columnsR-type voltage-gated Ca2N-type calcium channelsSpinal cord white matterRat dorsal columnsDorsal column axonsR-type Ca2Rat spinal cordCord white matterT-type channelsInflux of Ca2Dose-dependent mannerLoss of conductionAxonal conductionSpinal cordChannel blockersCalcium channelsSurface stimulationWhite matterPerfusion solutionInjuryGlass microelectrodes
1998
Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination
Imaizumi T, Kocsis J, Waxman S. Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination. Brain Research 1998, 779: 292-296. PMID: 9473700, DOI: 10.1016/s0006-8993(97)01171-2.Peer-Reviewed Original ResearchConceptsCompound action potentialDorsal columnsSpinal cordAction potentialsWhite matterSpinal cord dorsal columnAdult rat spinal cordAdult spinal cordRat spinal cordMin of reoxygenationAdult white matterAction potential conductionControl ratsFocal demyelinationAnoxic injurySupramaximal stimulationOnset of anoxiaAdult ratsDemyelinationPotential conductionCordX-irradiationRatsGreater recoveryOnset
1997
Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons
Steffensen I, Waxman S, Mills L, Stys P. Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons. Brain Research 1997, 776: 1-9. PMID: 9439790, DOI: 10.1016/s0006-8993(97)00868-8.Peer-Reviewed Original ResearchConceptsOptic nerveSpinal cordDorsal root axonsSciatic nerve sectionRat optic nerveCentral myelinated axonsCardiac type IFiner processesSimilar staining patternNerve sectionDorsal columnsSciatic nerveFrozen cryostat sectionsAnoxic injuryAxonal profilesImmunofluorescence labeling techniqueMyelinated axonsCell bodiesCryostat sectionsImportant mediatorAxonal localizationMammalian axonsNerveAxonsStaining pattern
1996
White Matter Stroke: Autoprotective Mechanisms with Therapeutic Implications
Fern R, Ransom B, Waxman S. White Matter Stroke: Autoprotective Mechanisms with Therapeutic Implications. Cerebrovascular Diseases 1996, 6: 59-65. DOI: 10.1159/000107999.Peer-Reviewed Original ResearchWhite matterAnoxic injuryWhite matter strokeIncidence of strokeCNS white matterLevels of GABARecovery of functionResult of anoxiaIrreversible dysfunctionAnoxic insultPharmacological strategiesIrreversible injuryTherapeutic implicationsEndogenous storesExogenous GABAInjuryGABAAutoprotective mechanismsStrokeIntracellular eventsExtracellular spaceCa2Protective treatmentAdenosineInflux
1994
Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons
Waxman S, Black J, Ransom B, Stys P. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research 1994, 644: 197-204. PMID: 8050031, DOI: 10.1016/0006-8993(94)91680-2.Peer-Reviewed Original ResearchConceptsOptic nerveOptic nerve axonsRat optic nerveNerve axonsBrain slice chamberCompound action potentialLoss of cristaeMicroM tetrodotoxinAnoxic injuryNormoxic controlsNerveAstrocyte processesPerinodal astrocyte processesWhite matterMyelinated axonsAstrocytic processesCNS axonsTetrodotoxinAction potentialsSlice chamberAxonsLoss of microtubulesCytoskeletal damageInjuryNormoxic conditionsAnoxic Injury of Central Myelinated Axons: Nonsynaptic Ionic Mechanisms
Ransom B, Waxman S, Stys P. Anoxic Injury of Central Myelinated Axons: Nonsynaptic Ionic Mechanisms. 1994, 77-90. DOI: 10.1007/978-3-642-78151-3_9.Peer-Reviewed Original ResearchGlial cellsAnoxic injuryWhite matterCentral nervous system traumaIrreversible anoxic injuryPathophysiology of strokeNervous system traumaCentral myelinated axonsNeuronal cell bodiesAnoxia/ischemiaGray matter areasCNS axonal injuryNeuronal injuryIonic mechanismsAxonal injurySystem traumaCell injuryMyelinated axonsInjuryCell bodiesAxonsMatter areasBrainMetabolic substratesReliable model system
1993
Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium
Waxman S, Black J, Ransom B, Stys P. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Research 1993, 614: 137-145. PMID: 8348309, DOI: 10.1016/0006-8993(93)91027-p.Peer-Reviewed Original ResearchConceptsArtificial cerebrospinal fluidMin of anoxiaOptic nerveZero-Ca2White matterAnoxic injuryCNS white matter tractAxonal cytoskeletonOptic nerve axonsCNS white matterRat optic nerveInflux of Ca2White matter tractsLoss of cristaeDisorganization of cristaeMembranous profilesUltrastructure of axonsAbnormal influxCerebrospinal fluidExtracellular calciumNerveMyelinated axonsNerve axonsNormal Ca2AxonsMolecular dissection of the myelinated axon
Waxman S, Ritchie J. Molecular dissection of the myelinated axon. Annals Of Neurology 1993, 33: 121-136. PMID: 7679565, DOI: 10.1002/ana.410330202.Peer-Reviewed Original ResearchConceptsMyelinated axonsInternodal axon membraneDemyelinated axonsCentral nervous system white matterNervous system white matterRestoration of conductionImportant therapeutic approachSchwann cell processesWhite matter axonsInflux of Ca2Important pathophysiological implicationsGlial cell processesAction potential conductionAxonal excitabilityGlial cellsAnoxic injuryMyelinated fibersTherapeutic approachesAstrocyte processesCell processesPathophysiological implicationsRepetitive firingWhite matterNeurological disordersAction potentials
1992
Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter
Stys P, Waxman S, Ransom B. Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter. Cerebrovascular And Brain Metabolism Reviews 1992, 12: 977-986. PMID: 1400652, DOI: 10.1038/jcbfm.1992.135.Peer-Reviewed Original ResearchConceptsFunctional recoveryWhite matterAnoxic injuryMin of anoxiaOptic nerveFunctional outcomeTypical CNS white matter tractAnoxic exposureIntracellular Ca2Anoxic/ischemic injuryCNS white matter tractCompound action potential areaGray matterIsolated rat optic nerveGreater functional recoveryEvoked electrical activityAction potential areaCNS white matterRat optic nerveWhite matter tractsFunctional injuryIschemic injuryPathological increaseAnoxic damageCAP peakUltrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve
Waxman S, Black J, Stys P, Ransom B. Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Research 1992, 574: 105-119. PMID: 1638387, DOI: 10.1016/0006-8993(92)90806-k.Peer-Reviewed Original ResearchConceptsOptic nerveRat optic nerveMin of anoxiaPost-anoxic recoveryAnoxic injuryAstrocyte processesMyelin sheathLoss of microtubulesCell-mediated damageCNS white matterInflux of calciumLarge-diameter axonsPrevious electrophysiological studiesAction potential conductionWhite matter tractsNodes of RanvierAnoxic insultUltrastructure of axonsGlial cellsVesicular degenerationConduction blockEarly recoveryElectrophysiological studiesNerveSignificant injuryIonic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger
Stys P, Waxman S, Ransom B. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. Journal Of Neuroscience 1992, 12: 430-439. PMID: 1311030, PMCID: PMC6575619, DOI: 10.1523/jneurosci.12-02-00430.1992.Peer-Reviewed Original ResearchConceptsRat optic nerveCompound action potentialAnoxic injuryOptic nerveWhite matterAction potentialsCentral white matter tractsWhite matter injuryCNS white matterMembrane depolarizationAnoxia/ischemiaWhite matter tractsCNS protectionAnoxic insultMyelinated tractsChannel blockersExchanger blockerIrreversible injuryExtracellular Ca2Mammalian CNSNerveInjuryMore injuriesBlockersFunctional integrity
1991
Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter
Stys P, Waxman S, Ransom B. Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Annals Of Neurology 1991, 30: 375-380. PMID: 1952825, DOI: 10.1002/ana.410300309.Peer-Reviewed Original ResearchConceptsWhite matterIsolated rat optic nerveCentral nervous system white matterNervous system white matterWhite matter injuryRat optic nerveMammalian central nervous systemSevere neurological impairmentCompound action potentialType of injuryCentral nervous systemFunctional recoveryOptic nervePharmacological blockadeNeurological impairmentAnoxic injuryIrreversible injuryNervous systemAction potentialsInjuryInfluxCa2Critical mechanismCellsNerve
1990
Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve
Waxman S, Davis P, Black J, Ransom B. Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve. Annals Of Neurology 1990, 28: 335-340. PMID: 2241117, DOI: 10.1002/ana.410280306.Peer-Reviewed Original ResearchConceptsCompound action potentialOptic nerveCentral white matterMinutes of anoxiaAction potentialsMD ratsWhite matterMammalian central white matterSupramaximal compound action potentialCompound action potential amplitudeAction potential amplitudeNeonatal optic nerveRat optic nerveControl optic nervesDistinct action potentialsWhite matter tractsUnaffected male littermatesAnoxic injuryMale littermatesDays postnatalNervePotential amplitudeOligodendroglial proliferationEffects of anoxiaAdult patternEffects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia
Stys P, Ransom B, Waxman S. Effects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia. Neuroscience Letters 1990, 115: 293-299. PMID: 2234507, DOI: 10.1016/0304-3940(90)90471-k.Peer-Reviewed Original ResearchConceptsAnoxic injuryChannel blockersWhite matterMammalian central white matterDihydropyridine calcium channel blockerChannel blockers Mn2Irreversible anoxic injuryCalcium channel blockersCNS white matterCompound action potentialCentral white matterDihydropyridine classOrganic Ca2Inorganic Ca2Extracellular Ca2Action potentialsNerve modelMin periodBlockersInjuryFunctional integrityConventional Ca2Ca2InfluxIntracellular compartments