Featured Publications
Alpha-tocotrienol enhances arborization of primary hippocampal neurons via upregulation of Bcl-xL
Park HA, Crowe-White KM, Ciesla L, Scott M, Bannerman S, Davis AU, Adhikari B, Burnett G, Broman K, Ferdous KA, Lackey KH, Licznerski P, Jonas EA. Alpha-tocotrienol enhances arborization of primary hippocampal neurons via upregulation of Bcl-xL. Nutrition Research 2022, 101: 31-42. PMID: 35366596, PMCID: PMC9081260, DOI: 10.1016/j.nutres.2022.02.007.Peer-Reviewed Original ResearchConceptsPrimary hippocampal neuronsControl neuronsHippocampal neuronsAlpha-tocotrienolBcl-xLVitamin E familyCerebral ischemiaNeuronal viabilityMature neuronsB cellsNeurite complexityNeuronal functionMitochondrial energy productionBrain developmentCentral mechanismsNeuronsBeneficial effectsOxidative stressBcl-xL upregulationProtein levelsNeurite branchingTreatmentE familyATP levelsNeurite outgrowthAlpha-Tocotrienol Prevents Oxidative Stress-Mediated Post-Translational Cleavage of Bcl-xL in Primary Hippocampal Neurons
Park HA, Mnatsakanyan N, Broman K, Davis AU, May J, Licznerski P, Crowe-White KM, Lackey KH, Jonas EA. Alpha-Tocotrienol Prevents Oxidative Stress-Mediated Post-Translational Cleavage of Bcl-xL in Primary Hippocampal Neurons. International Journal Of Molecular Sciences 2019, 21: 220. PMID: 31905614, PMCID: PMC6982044, DOI: 10.3390/ijms21010220.Peer-Reviewed Original ResearchConceptsPrimary hippocampal neuronsHippocampal neuronsReactive oxygen speciesMitochondrial dysfunctionBcl-xLMitochondrial membrane potentialMitochondrial functionProduction of ROSExcitotoxic conditionsGlutamate challengeNeuroprotective propertiesMembrane potentialNeuronal deathExcitotoxic stimulationBcl-xL levelsNeuronal survivalIntracellular ATP depletionMitochondrial reactive oxygen speciesB cellsImportant causeDysfunctionNeuronsROS productionATP depletionNeurite outgrowthBcl-xL Is Necessary for Neurite Outgrowth in Hippocampal Neurons
Park HA, Licznerski P, Alavian KN, Shanabrough M, Jonas EA. Bcl-xL Is Necessary for Neurite Outgrowth in Hippocampal Neurons. Antioxidants & Redox Signaling 2015, 22: 93-108. PMID: 24787232, PMCID: PMC4281845, DOI: 10.1089/ars.2013.5570.Peer-Reviewed Original ResearchConceptsDeath receptor 6Hippocampal neuronsNeurite outgrowthExacerbation of hypoxiaBcl-xLNeuronal outgrowthNeuronal process outgrowthNeuronal injuryNeurodegenerative stimuliVivo ischemiaHypoxic injuryNeuronal survivalBrain injuryImpairs neurite outgrowthHypoxic controlsSynapse numberAxonal pruningNeurite damageB cellsReceptor 6Synaptic plasticityDR6 expressionSynapse formationEarly increaseNeuronsDecreased expression of synapse-related genes and loss of synapses in major depressive disorder
Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr M, Son H, Duman RS. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nature Medicine 2012, 18: 1413-1417. PMID: 22885997, PMCID: PMC3491115, DOI: 10.1038/nm.2886.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsCalmodulinCell LineDepressive Disorder, MajorGATA1 Transcription FactorGene Expression ProfilingGene Expression RegulationHumansMicroarray AnalysisMicroscopy, ElectronPrefrontal CortexRab3A GTP-Binding ProteinRab4 GTP-Binding ProteinsRatsReverse Transcriptase Polymerase Chain ReactionSynapsesSynapsinsTubulinPostsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development
Komai S, Licznerski P, Cetin A, Waters J, Denk W, Brecht M, Osten P. Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nature Neuroscience 2006, 9: 1125-1133. PMID: 16921372, DOI: 10.1038/nn1752.Peer-Reviewed Original ResearchConceptsSomatodendritic excitabilityExperience-dependent developmentLayer 2/3 pyramidal neuronsCortical networksSensory responsesRat somatosensory cortexNormal cortical developmentCortical sensory responsesDevelopmental strengtheningPostsynaptic excitabilityPyramidal neuronsSomatosensory cortexCortical neuronsBarrel cortexPostsynaptic neuronsCortical developmentSensory cortexSensory pathwaysSensory responsivenessSynaptic strengthExcitabilitySensory deprivationCortexNeuronsVivo recordingsThe transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons
Chung CY, Licznerski P, Alavian KN, Simeone A, Lin Z, Martin E, Vance J, Isacson O. The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain 2010, 133: 2022-2031. PMID: 20573704, PMCID: PMC2892944, DOI: 10.1093/brain/awq142.Peer-Reviewed Original ResearchConceptsMidbrain dopaminergic neuronsVentral mesencephalic culturesTranscription factor orthodenticle homeobox 2Orthodenticle homeobox 2Dopaminergic neuronsMesencephalic culturesShort hairpin RNAHomeobox 2A10 dopaminergic neuronsCyclase-activating peptideHairpin RNAConditional knockout miceVentral mesencephalonNeuronal vulnerabilityDopaminergic projectionsAxonal projectionsParkinson's diseaseAdult miceKnockout miceMN9D cellsNeuropilin-2Elevated geneNeuronsNeuropilin-1Human midbrain
2016
Metabolic Control of Cell Death : The Role of Bcl‐xL
Park H, Licznerski P, Niu Y, Mnatsakanyan N, Miranda P, Wu J, Sacchetti S, Polster B, Alavian K, Jonas E. Metabolic Control of Cell Death : The Role of Bcl‐xL. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.1162.2.Peer-Reviewed Original ResearchΔN-BclMitochondrial permeability transition poreABT-737Glutamate-exposed neuronsBcl-xLGlutamate-induced excitotoxicityGlutamate-induced deathNeuronal energy metabolismMitochondrial potentialCell deathGlutamate challengeBrain ischemiaNeuroprotective propertiesNeuronal survivalFold lower concentrationCyclosporine ASpecific small molecule inhibitorsATP productionSmall molecule inhibitorsMetabolic controlMitochondrial channel activityMalignant cellsPro-apoptotic roleNeuronsDeath
2014
The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed
Alavian KN, Jeddi S, Naghipour SI, Nabili P, Licznerski P, Tierney TS. The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed. Journal Of Biomedical Science 2014, 21: 27. PMID: 24685177, PMCID: PMC3998737, DOI: 10.1186/1423-0127-21-27.Peer-Reviewed Original ResearchConceptsMesencephalic dopaminergic neuronsDopaminergic neuronsParkinson's diseaseSubstantia nigra pars compactaMidbrain dopaminergic neuronsLong-term survivalPars compactaSet of neuronsPathological hallmarkNormal physiological functionNeurotransmitter identityNeurophysiological functionsNeuronsDiseaseLifelong maintenanceCurrent reviewTranscription factorsNurr1DegenerationPhysiological functionsReviewFactorsSpecific vulnerabilitiesMidbrainCompacta