Frederick Wilson, MD, PhD
Research & Publications
Biography
News
Research Summary
Dr. Wilson's research focuses on the identification and characterization of genetic vulnerabilities in cancer as well as genetic determinants of sensitivity and resistance to targeted therapies. His group leverages functional genomic approaches in cell models and sequencing-based characterization of patient tumors to understand how cancers become resistant to targeted therapies and to identify new potential treatment targets.
Extensive Research Description
Dr. Wilson's research efforts broadly include cancer genomics, identifying cancer vulnerabilities, and understanding resistance to targeted therapies. Specific areas of interest include:
1. Characterization of RASGRF1 fusions as an oncogenic driver in lung and other cancers. Dr. Wilson’s team identified recurrent gene fusions involving the guanine exchange factor (GEF) RASGRF1 in non-small cell lung cancer, pancreatic ductal adenocarcinoma, and sarcoma. RASGRF1 fusions activate RAS signaling, induce cellular transformation, and promote tumorigenesis. Preclinical studies demonstrate that tumor cells harboring RASGRF1 fusions are sensitive to targeting of the MAP kinase pathway, an established downstream effector of RAS signaling.
2. PRMT5 pathway inhibition as a therapeutic strategy in cancers with MTAP loss. Deletion of the MTAP gene occurs in approximately 15% of all malignancies. Dr. Wilson and others identified the arginine methyltransferase PRMT5 as a potential genetic vulnerability in cancers with MTAP loss, suggesting that these cancers may be sensitive to targeting of PRMT5. This work provided a rationale for the development of inhibitors of PRMT5 and MAT2A (another pathway component) which are entering early-phase clinical study in patients with advanced MTAP-deleted cancers.
3. Resistance to targeted therapies in lung cancer. Multiple FDA-approved targeted therapies are available for patients with advanced non-small cell lung cancer with mutated oncogenic drivers including EGFR, ALK, and ROS1. Unfortunately, resistance to these therapies is common and limits the ability to provide durable cancer control for patients. Using a genome-scale functional genomic screening platform, Dr. Wilson identified novel genetic drivers of resistance to ALK inhibitors in ALK-dependent lung cancer models. Many of the resistance-associated genes identified from this study also confer resistance to EGFR inhibition in EGFR-mutant lung cancer models. Insights from these studies may inform the development of treatment paradigms to delay or overcome resistance to targeted therapies in patients with advanced lung cancers.
Ultimately, translational research efforts in the laboratory are directed towards the identification of novel drug targets and opportunities for therapeutic drug combinations to overcome or delay drug resistance.
Coauthors
Research Interests
Lung Neoplasms
Selected Publications
- Molecular predictors and immunomodulatory role of dual checkpoint inhibitor blockade using ipilimumab/nivolumab in patients with extensive stage small cell lung cancer.Chiang A, Asghari H, Ashley K, Gettinger S, Goldberg S, Herbst R, Wilson F, Newton B, Cohenuram M, Sabbath K, Talsania A, Russo A, Schultz E, Skrzypczak S, Kingsford C, Schalper K. Molecular predictors and immunomodulatory role of dual checkpoint inhibitor blockade using ipilimumab/nivolumab in patients with extensive stage small cell lung cancer. Journal Of Clinical Oncology 2023, 41: 8597-8597. DOI: 10.1200/jco.2023.41.16_suppl.8597.
- Nivolumab and ipilimumab in advanced non small cell lung cancer previously treated with PD1 axis inhibition.Gettinger S, Wilson F, Goldberg S, Chiang A, Henick B, Rowen E, Gerrish H, Duffield E, Davies M, Dest V, Komlo A, Pope J, Cheng W, Schalper K, Herbst R. Nivolumab and ipilimumab in advanced non small cell lung cancer previously treated with PD1 axis inhibition. Journal Of Clinical Oncology 2023, 41: 9121-9121. DOI: 10.1200/jco.2023.41.16_suppl.9121.
- A pilot study of ipilimumab and nivolumab in recurrent extensive-stage small cell lung cancer after platinum-based chemotherapy.Chiang A, Austin M, Stewart T, Arammash M, Bhatt S, Gettinger S, Goldberg S, Wilson F, Newton B, Cohenuram M, Sabbath K, Talsania A, Russo A, Herbst R, Schalper K. A pilot study of ipilimumab and nivolumab in recurrent extensive-stage small cell lung cancer after platinum-based chemotherapy. Journal Of Clinical Oncology 2022, 40: 8583-8583. DOI: 10.1200/jco.2022.40.16_suppl.8583.
- Making National Cancer Institute–Designated Comprehensive Cancer Center Knowledge Accessible to Community Oncologists via an Online Tumor Board: Longitudinal Observational StudyKalra M, Henry E, McCann K, Karuturi MS, Bustamante Alvarez JG, Parkes A, Wesolowski R, Wei M, Mougalian SS, Durm G, Qin A, Schonewolf C, Trivedi M, Armaghani AJ, Wilson FH, Iams WT, Turk AA, Vikas P, Cecchini M, Lubner S, Pathak P, Spencer K, Koshkin VS, Labriola MK, Marshall CH, Beckermann KE, , Sharifi MN, Bejjani AC, Hotchandani V, Housri S, Housri N. Making National Cancer Institute–Designated Comprehensive Cancer Center Knowledge Accessible to Community Oncologists via an Online Tumor Board: Longitudinal Observational Study. JMIR Cancer 2022, 8: e33859. PMID: 35588361, PMCID: PMC9164098, DOI: 10.2196/33859.
- RASGRF1 Fusions Activate Oncogenic RAS Signaling and Confer Sensitivity to MEK Inhibition.Hunihan L, Zhao D, Lazowski H, Li M, Qian Y, Abriola L, Surovtseva YV, Muthusamy V, Tanoue LT, Rothberg B, Schalper KA, Herbst RS, Wilson FH. RASGRF1 Fusions Activate Oncogenic RAS Signaling and Confer Sensitivity to MEK Inhibition. Clinical Cancer Research 2022, 28: 3091-3103. PMID: 35247929, PMCID: PMC9288503, DOI: 10.1158/1078-0432.ccr-21-4291.
- Résultats rapportés par les patients (PRO, patient-reported outcomes) de l’étude de phase II CodeBreaK 100 évaluant l’intérêt du sotorasib dans le traitement du cancer du poumon non à petites cellules (CPNPC) avec mutation KRAS p.G12CBarlesi F, Spira A, Wilson F, Shapiro G, Dooms C, Curioni-Fontecedro A, Esaki T, Cocks K, Trigg A, Stevinson K, Matsuda T, Tran Q, Gray J. Résultats rapportés par les patients (PRO, patient-reported outcomes) de l’étude de phase II CodeBreaK 100 évaluant l’intérêt du sotorasib dans le traitement du cancer du poumon non à petites cellules (CPNPC) avec mutation KRAS p.G12C. Revue Des Maladies Respiratoires Actualités 2022, 14: 207. DOI: 10.1016/j.rmra.2021.11.364.
- Osimertinib in EGFR-Mutant Non-Small Cell Lung Carcinoma: Clinical Activity and Mechanisms of ResistanceTalsania A, Zhang J, Wilson F. Osimertinib in EGFR-Mutant Non-Small Cell Lung Carcinoma: Clinical Activity and Mechanisms of Resistance. 2021, 65-73. DOI: 10.1007/978-3-030-74028-3_4.
- P52.03 Efficacy of Sotorasib in KRAS p.G12C-Mutated NSCLC with Stable Brain Metastases: A Post-Hoc Analysis of CodeBreaK 100Ramalingam S, Skoulidis F, Govindan R, Velcheti V, Li B, Besse B, Dy G, Kim D, Schuler M, Vincent M, Wilson F, Park J, Gutierrez J, Tran Q, Jones S, Wolf J. P52.03 Efficacy of Sotorasib in KRAS p.G12C-Mutated NSCLC with Stable Brain Metastases: A Post-Hoc Analysis of CodeBreaK 100. Journal Of Thoracic Oncology 2021, 16: s1123. DOI: 10.1016/j.jtho.2021.08.547.
- Patient-reported outcomes (PRO) from the phase 2 CodeBreaK 100 trial evaluating sotorasib in KRAS p.G12C mutated non-small cell lung cancer (NSCLC).Spira A, Wilson F, Shapiro G, Dooms C, Curioni-Fontecedro A, Esaki T, Barlesi F, Cocks K, Trigg A, Stevinson K, Matsuda T, Tran Q, Gray J. Patient-reported outcomes (PRO) from the phase 2 CodeBreaK 100 trial evaluating sotorasib in KRAS p.G12C mutated non-small cell lung cancer (NSCLC). Journal Of Clinical Oncology 2021, 39: 9057-9057. DOI: 10.1200/jco.2021.39.15_suppl.9057.
- Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trialGoldberg SB, Schalper KA, Gettinger SN, Mahajan A, Herbst RS, Chiang AC, Lilenbaum R, Wilson FH, Omay SB, Yu JB, Jilaveanu L, Tran T, Pavlik K, Rowen E, Gerrish H, Komlo A, Gupta R, Wyatt H, Ribeiro M, Kluger Y, Zhou G, Wei W, Chiang VL, Kluger HM. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. The Lancet Oncology 2020, 21: 655-663. PMID: 32251621, PMCID: PMC7380514, DOI: 10.1016/s1470-2045(20)30111-x.
- Abstract PR03: A phase 1 trial of AG-270 in patients with advanced solid tumors or lymphoma with homozygous MTAP deletionHeist R, Gounder M, Postel-Vinay S, Wilson F, Garralda E, Do K, Shapiro G, Martin-Romano P, Wulf G, Cooper M, Almon C, Nabhan S, Iyer V, Zhang Y, Marks K, Aguado-Fraile E, Basile F, Flaherty K, Burris H. Abstract PR03: A phase 1 trial of AG-270 in patients with advanced solid tumors or lymphoma with homozygous MTAP deletion. Molecular Cancer Therapeutics 2019, 18: pr03-pr03. DOI: 10.1158/1535-7163.targ-19-pr03.
- Implementation and uptake of an interactive virtual online tumor board across NCI-Cancer Centers.Kalra M, McCann K, Karuturi M, Alvarez J, Parkes A, Wesolowski R, Wei M, Mougalian S, Durm G, Qin A, Trivedi M, Armaghani A, Wilson F, Iams W, Cecchini M, Turk A, Soliman H, Tripathy D, Housri S, Housri N. Implementation and uptake of an interactive virtual online tumor board across NCI-Cancer Centers. Journal Of Clinical Oncology 2019, 37: 272-272. DOI: 10.1200/jco.2019.37.27_suppl.272.
- Larotrectinib in NTRK-Rearranged Solid TumorsWilson FH, Herbst RS. Larotrectinib in NTRK-Rearranged Solid Tumors. Biochemistry 2019, 58: 1555-1557. PMID: 30865435, PMCID: PMC7356829, DOI: 10.1021/acs.biochem.9b00126.
- Amplification of Wild-type KRAS Imparts Resistance to Crizotinib in MET Exon 14 Mutant Non–Small Cell Lung CancerBahcall M, Awad MM, Sholl LM, Wilson FH, Xu M, Wang S, Palakurthi S, Choi J, Ivanova E, Leonardi GC, Ulrich BC, Paweletz CP, Kirschmeier PT, Watanabe M, Baba H, Nishino M, Nagy RJ, Lanman RB, Capelletti M, Chambers ES, Redig AJ, VanderLaan PA, Costa DB, Imamura Y, Jänne P. Amplification of Wild-type KRAS Imparts Resistance to Crizotinib in MET Exon 14 Mutant Non–Small Cell Lung Cancer. Clinical Cancer Research 2018, 24: 5963-5976. PMID: 30072474, PMCID: PMC6279568, DOI: 10.1158/1078-0432.ccr-18-0876.
- Yale Cancer Center Precision Medicine Tumor Board: one tumour, multiple targetsStewart T, Finberg K, Walther Z, Sklar JL, Hafez N, Eder JP, Anderson K, Wilson F, Goldberg SB. Yale Cancer Center Precision Medicine Tumor Board: one tumour, multiple targets. The Lancet Oncology 2018, 19: 1567-1568. PMID: 32956641, DOI: 10.1016/s1470-2045(18)30759-9.
- ERBB Signaling Interrupted: Targeting Ligand-Induced Pathway ActivationWilson FH, Politi K. ERBB Signaling Interrupted: Targeting Ligand-Induced Pathway Activation. Cancer Discovery 2018, 8: 676-678. PMID: 29858224, PMCID: PMC6330656, DOI: 10.1158/2159-8290.cd-18-0368.
- Mechanisms of acquired resistance to MET tyrosine kinase inhibitors (TKIs) in MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC).Awad M, Bahcall M, Sholl L, Wilson F, Paweletz C, Capelletti M, Leonardi G, Watanabe M, Baba H, Chambers E, Redig A, Nishino M, VanderLaan P, Costa D, Imamura Y, Janne P. Mechanisms of acquired resistance to MET tyrosine kinase inhibitors (TKIs) in MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC). Journal Of Clinical Oncology 2018, 36: 9069-9069. DOI: 10.1200/jco.2018.36.15_suppl.9069.
- Assigning clinical meaning to somatic and germ-line whole-exome sequencing data in a prospective cancer precision medicine studyGhazani AA, Oliver NM, St. Pierre JP, Garofalo A, Rainville IR, Hiller E, Treacy DJ, Rojas-Rudilla V, Wood S, Bair E, Parello M, Huang F, Giannakis M, Wilson FH, Stover EH, Corsello SM, Nguyen T, Rana HQ, Church AJ, Lowenstein C, Cibulskis C, Amin-Mansour A, Heng J, Brais L, Santos A, Bauer P, Waldron A, Lo P, Gorman M, Lydon CA, Welch M, McNamara P, Gabriel S, Sholl LM, Lindeman NI, Garber JE, Joffe S, Van Allen EM, Gray SW, Jänne P, Garraway LA, Wagle N. Assigning clinical meaning to somatic and germ-line whole-exome sequencing data in a prospective cancer precision medicine study. Genetics In Medicine 2017, 19: 787-795. PMID: 28125075, DOI: 10.1038/gim.2016.191.
- MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cellsKryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE, Vazquez F, Weir BA, Fitzgerald ME, Tanaka M, Bielski CM, Scott JM, Dennis C, Cowley GS, Boehm JS, Root DE, Golub TR, Clish CB, Bradner JE, Hahn WC, Garraway LA. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 2016, 351: 1214-1218. PMID: 26912360, PMCID: PMC4997612, DOI: 10.1126/science.aad5214.
- A Functional Landscape of Resistance to ALK Inhibition in Lung CancerWilson FH, Johannessen CM, Piccioni F, Tamayo P, Kim JW, Van Allen EM, Corsello SM, Capelletti M, Calles A, Butaney M, Sharifnia T, Gabriel SB, Mesirov JP, Hahn WC, Engelman JA, Meyerson M, Root DE, Jänne PA, Garraway LA. A Functional Landscape of Resistance to ALK Inhibition in Lung Cancer. Cancer Cell 2015, 27: 397-408. PMID: 25759024, PMCID: PMC4398996, DOI: 10.1016/j.ccell.2015.02.005.
- Genetic modifiers of EGFR dependence in non-small cell lung cancerSharifnia T, Rusu V, Piccioni F, Bagul M, Imielinski M, Cherniack AD, Pedamallu CS, Wong B, Wilson FH, Garraway LA, Altshuler D, Golub TR, Root DE, Subramanian A, Meyerson M. Genetic modifiers of EGFR dependence in non-small cell lung cancer. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 18661-18666. PMID: 25512530, PMCID: PMC4284598, DOI: 10.1073/pnas.1412228112.
- Administration of Vincristine in a Patient with Machado-Joseph DiseaseColpo A, Wilson FH, Nardi V, Hochberg E. Administration of Vincristine in a Patient with Machado-Joseph Disease. Oncology 2012, 82: 165-167. PMID: 22433430, PMCID: PMC3701890, DOI: 10.1159/000336602.
- Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cellsDutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, Wilson FH, Currie T, Khanna-Gupta A, Berliner N, Kutok JL, Ebert BL. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 2010, 117: 2567-2576. PMID: 21068437, PMCID: PMC3062351, DOI: 10.1182/blood-2010-07-295238.
- Chapter 19 The Syndrome of Hypertension and Hyperkalemia (Pseudohypoaldosteronism Type II) WNK Kinases Regulate the Balance Between Renal Salt Reabsorption and Potassium SecretionKahle K, Wilson F, Lifton R. Chapter 19 The Syndrome of Hypertension and Hyperkalemia (Pseudohypoaldosteronism Type II) WNK Kinases Regulate the Balance Between Renal Salt Reabsorption and Potassium Secretion. 2009, 313-329. DOI: 10.1016/b978-0-12-449851-8.00019-x.
- A mutation in WNK4 that causes human hypertension activates the epithelial Na+ channel in vivoRing A, Kahle K, Cheng S, Leng Q, Lalioti M, Wilson F, Rinehart J, Hebert S, Lifton R. A mutation in WNK4 that causes human hypertension activates the epithelial Na+ channel in vivo. The FASEB Journal 2007, 21: a876-a876. DOI: 10.1096/fasebj.21.6.a876-c.
- WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivoRing AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lalioti MD, Volkman HM, Wilson FH, Hebert SC, Lifton RP. WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 4020-4024. PMID: 17360470, PMCID: PMC1805455, DOI: 10.1073/pnas.0611727104.
- An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasisRing AM, Leng Q, Rinehart J, Wilson FH, Kahle KT, Hebert SC, Lifton RP. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 4025-4029. PMID: 17360471, PMCID: PMC1803763, DOI: 10.1073/pnas.0611728104.
- WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1)Leng Q, Kahle KT, Rinehart J, MacGregor GG, Wilson FH, Canessa CM, Lifton RP, Hebert SC. WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1). The Journal Of Physiology 2006, 571: 275-286. PMID: 16357011, PMCID: PMC1796803, DOI: 10.1113/jphysiol.2005.102202.
- WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasisRinehart J, Kahle KT, de los Heros P, Vazquez N, Meade P, Wilson FH, Hebert SC, Gimenez I, Gamba G, Lifton RP. WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 16777-16782. PMID: 16275913, PMCID: PMC1283841, DOI: 10.1073/pnas.0508303102.
- Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switchKahle KT, Wilson FH, Lifton RP. Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch. Trends In Endocrinology And Metabolism 2005, 16: 98-103. PMID: 15808806, DOI: 10.1016/j.tem.2005.02.012.
- A Cluster of Metabolic Defects Caused by Mutation in a Mitochondrial tRNAWilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, Nelson-Williams C, Raja KM, Kashgarian M, Shulman GI, Scheinman SJ, Lifton RP. A Cluster of Metabolic Defects Caused by Mutation in a Mitochondrial tRNA. Science 2004, 306: 1190-1194. PMID: 15498972, PMCID: PMC3033655, DOI: 10.1126/science.1102521.
- Paracellular Cl- permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertensionKahle KT, MacGregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP. Paracellular Cl- permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertension. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 14877-14882. PMID: 15465913, PMCID: PMC522037, DOI: 10.1073/pnas.0406172101.
- WNK kinases: molecular regulators of integrated epithelial ion transportKahle KT, Wilson FH, Lalioti M, Toka H, Qin H, Lifton RP. WNK kinases: molecular regulators of integrated epithelial ion transport. Current Opinion In Nephrology & Hypertension 2004, 13: 557-562. PMID: 15300163, DOI: 10.1097/00041552-200409000-00012.
- WNK4 regulates apical and basolateral Cl– flux in extrarenal epitheliaKahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD, Forbush B, Aronson PS, Lifton RP. WNK4 regulates apical and basolateral Cl– flux in extrarenal epithelia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 2064-2069. PMID: 14769928, PMCID: PMC357052, DOI: 10.1073/pnas.0308434100.
- WNK4 regulates the balance between renal NaCl reabsorption and K+ secretionKahle KT, Wilson FH, Leng Q, Lalioti MD, O'Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nature Genetics 2003, 35: 372-376. PMID: 14608358, DOI: 10.1038/ng1271.
- WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl−-transporting epitheliaChoate KA, Kahle KT, Wilson FH, Nelson-Williams C, Lifton RP. WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl−-transporting epithelia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 663-668. PMID: 12522152, PMCID: PMC141053, DOI: 10.1073/pnas.242728499.
- Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na–Cl cotransporter is inhibited by wild-type but not mutant WNK4Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP. Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na–Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 680-684. PMID: 12515852, PMCID: PMC141056, DOI: 10.1073/pnas.242735399.
- Salt and blood pressure: new insight from human genetic studies.Lifton RP, Wilson FH, Choate KA, Geller DS. Salt and blood pressure: new insight from human genetic studies. Cold Spring Harbor Symposia On Quantitative Biology 2002, 67: 445-50. PMID: 12858570, DOI: 10.1101/sqb.2002.67.445.
- Human Hypertension Caused by Mutations in WNK KinasesWilson F, Disse-Nicodème S, Choate K, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford D, Lipkin G, Achard J, Feely M, Dussol B, Berland Y, Unwin R, Mayan H, Simon D, Farfel Z, Jeunemaitre X, Lifton R. Human Hypertension Caused by Mutations in WNK Kinases. Science 2001, 293: 1107-1112. PMID: 11498583, DOI: 10.1126/science.1062844.
- Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporterRace J, Makhlouf F, Logue P, Wilson F, Dunham P, Holtzman E. Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. American Journal Of Physiology 1999, 277: c1210-c1219. PMID: 10600773, DOI: 10.1152/ajpcell.1999.277.6.c1210.