Diane Krause, MD, PhD
Research & Publications
Biography
News
Research Summary
The overall goals of my research are to characterize bone marrow (BM) derived stem/progenitor cells, and to define the mechanisms that regulate the self-renewal and differentiation of these cells with the goal of improving therapeutic approaches to hematological diseases including leukemia. We have 2 major foci. The first is the molecular mechanism(s) regulating gene expression during normal and malignant hematopoiesis. We are using hematopoietic stem cells and human embryonic stem cells to better understand Acute Megakaryoblastic Leukemia. In vitro and in vivo cell and molecular approaches will help us to better understand hematopoiesis and leukemogenesis. The second focus is the differentiation of pluripotent stem cells to produce function parathyroid epithelial cells in order to develop effective cellular therapy for patients with hypoparathyroidism. We welcome graduate students to join the lab.
Link to laboratory website: https://krauselab.net/
Specialized Terms: Bone Marrow Transplantation; Stem Cells; Cell and Molecular Hematology; Leukemia
Extensive Research Description
Hematopoiesis and leukemogenesis using bone marrow derived stem and progenitor cells Projects in the lab focus on molecular mechanisms that regulate early hematopoiesis and may be dysfunctional in leukemogenesis. Specifically, we are using primary cells as well as murine and human embryonic stem cells to study RBM15 and MKL1, two genes that are fused in the t(1;22) translocation associated with Acute Megakaryoblastic Leukemia AMKL). We are studying the roles of RBM15 and MKL1 in normal myelopoiesis and leukemogenesis. We have shown that RBM15 is downregulated as hematopoietic stem cells differentiate down the myeloid lineage such that megakaryoblasts express low levels of RBM15. When RBM15 is overexpressed, it prevents myeloid differentiation, and when RBM15 is inhibited or deleted, myeloid differentiation is enhanced, and there is a loss of hematopoietic stem and progenitor cell self-renewal. RBM15 can affect Notch signaling; RBM15 represses Notch induced Hes1 promoter activity. In addition, RBM15 is required for m6A RNA modification, and we are studying th role of this epitranscriptomic modification in normal hematopoiesis and leukemogenesis.
MKL1, identified at the C-terminus of the t(1;22) translocation specific to acute megakaryoblastic leukemia, is highly expressed in differentiated muscle cells and promotes muscle differentiation by activating serum response factor (SRF). The Krause laboratory has shown that MKL1 expression is upregulated during murine and human megakaryocytic differentiation, and that enforced overexpression of MKL1 enhances megakaryocytic differentiation. When the Human Erythroleukemia (HEL) cell line is induced to differentiate with TPA, overexpression of MKL1 results in an increased number of megakaryocytes with a concurrent increase in ploidy. MKL1 overexpression also promotes thrombopoietin-induced megakaryocytic differentiation of primary human CD34+ cells. The effect of MKL1 is abrogated when SRF is knocked down, suggesting that MKL1 acts through SRF. Consistent with these findings in human cells, knock out of MKL1 in mice leads to reduced platelet counts, and reduced ploidy in bone marrow megakaryocytes. Thus, MKL1 promotes physiological maturation of human and murine megakaryocytes.
Link to laboratory website: https://krauselab.net/
Coauthors
Research Interests
Cell Biology; Hematology; Leukemia; Pathology; Stem Cells; Gene Expression; Bone Marrow Transplantation
Selected Publications
- Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice.Xavier-Ferrucio J, Scanlon V, Li X, Zhang PX, Lozovatsky L, Ayala-Lopez N, Tebaldi T, Halene S, Cao C, Fleming MD, Finberg KE, Krause DS. Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice. Blood 2019, 134: 1547-1557. PMID: 31439541, PMCID: PMC6839952, DOI: 10.1182/blood.2019002039.
- Differentiation of PTH-Expressing Cells From Human Pluripotent Stem Cells.Lawton BR, Martineau C, Sosa JA, Roman S, Gibson CE, Levine MA, Krause DS. Differentiation of PTH-Expressing Cells From Human Pluripotent Stem Cells. Endocrinology 2020, 161 PMID: 32810225, PMCID: PMC7505176, DOI: 10.1210/endocr/bqaa141.
- Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction.Sanada C, Xavier-Ferrucio J, Lu YC, Min E, Zhang PX, Zou S, Kang E, Zhang M, Zerafati G, Gallagher PG, Krause DS. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 2016, 128: 923-33. PMID: 27268089, PMCID: PMC4990855, DOI: 10.1182/blood-2016-01-693705.
- Nonstochastic reprogramming from a privileged somatic cell state.Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J. Nonstochastic reprogramming from a privileged somatic cell state. Cell 2014, 156: 649-62. PMID: 24486105, PMCID: PMC4318260, DOI: 10.1016/j.cell.2014.01.020.
- Role of RhoA-specific guanine exchange factors in regulation of endomitosis in megakaryocytes.Gao Y, Smith E, Ker E, Campbell P, Cheng EC, Zou S, Lin S, Wang L, Halene S, Krause DS. Role of RhoA-specific guanine exchange factors in regulation of endomitosis in megakaryocytes. Developmental Cell 2012, 22: 573-84. PMID: 22387001, PMCID: PMC3306542, DOI: 10.1016/j.devcel.2011.12.019.
- Serum response factor is an essential transcription factor in megakaryocytic maturation.Halene S, Gao Y, Hahn K, Massaro S, Italiano JE, Schulz V, Lin S, Kupfer GM, Krause DS. Serum response factor is an essential transcription factor in megakaryocytic maturation. Blood 2010, 116: 1942-50. PMID: 20525922, PMCID: PMC3173990, DOI: 10.1182/blood-2010-01-261743.
- Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung.Kassmer SH, Jin H, Zhang PX, Bruscia EM, Heydari K, Lee JH, Kim CF, Kassmer SH, Krause DS. Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells (Dayton, Ohio) 2013, 31: 2759-66. PMID: 23681901, PMCID: PMC4536826, DOI: 10.1002/stem.1413.
- Role for MKL1 in megakaryocytic maturation.Cheng EC, Luo Q, Bruscia EM, Renda MJ, Troy JA, Massaro SA, Tuck D, Schulz V, Mane SM, Berliner N, Sun Y, Morris SW, Qiu C, Krause DS. Role for MKL1 in megakaryocytic maturation. Blood 2009, 113: 2826-34. PMID: 19136660, PMCID: PMC2661865, DOI: 10.1182/blood-2008-09-180596.
- Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation.Ma X, Renda MJ, Wang L, Cheng EC, Niu C, Morris SW, Chi AS, Krause DS. Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation. Molecular And Cellular Biology 2007, 27: 3056-64. PMID: 17283045, PMCID: PMC1899951, DOI: 10.1128/MCB.01339-06.
- The Molecular Signature of Megakaryocyte-Erythroid Progenitors Reveals a Role for the Cell Cycle in Fate Specification.Lu YC, Sanada C, Xavier-Ferrucio J, Wang L, Zhang PX, Grimes HL, Venkatasubramanian M, Chetal K, Aronow B, Salomonis N, Krause DS. The Molecular Signature of Megakaryocyte-Erythroid Progenitors Reveals a Role for the Cell Cycle in Fate Specification. Cell Reports 2018, 25: 3229. PMID: 30540953, PMCID: PMC6357951, DOI: 10.1016/j.celrep.2018.11.075.
- Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies.Xavier-Ferrucio J, Krause DS. Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies. Stem Cells (Dayton, Ohio) 2018, 36: 1138-1145. PMID: 29658164, PMCID: PMC6105498, DOI: 10.1002/stem.2834.