Anne Williamson, PhD
Research & Publications
Biography
News
Research Summary
My lab is interested in the circuit and cellular changes associated with the development of the chronic state in humans and in animal models of temporal lobe epilepsy. We use a variety of electrophysiological and anatomical techniques including whole cell patch clamp in brain slices and cell fills to examine these issues.
While many animal models of epilepsy have been developed, it is important to have a thorough understanding of the human pathology so that the models can be evaluated. We have the opportunity to examine human material resected for the treatment of medically intractable seizures and found that in there are numerous changes in the network properties in one part of the hippocampus, the dentate gyrus. We have primarily focused on alterations in the inhibitory system and have described several changes in both the inhibitory circuitry as well as in the regulation of the availability of GABA, the primary inhibitory transmitter in the central nervous system. Many of these changes also occur in an animal model of temporal lobe epilepsy, the kainate-treated rat, and we are currently studying them in greater detail.
As part of this effort, we are examining synaptic plasticity in the human material with an eye to examining the link between alterations in synaptic function and brain function.
While many animal models of epilepsy have been developed, it is important to have a thorough understanding of the human pathology so that the models can be evaluated. We have the opportunity to examine human material resected for the treatment of medically intractable seizures and found that in there are numerous changes in the network properties in one part of the hippocampus, the dentate gyrus. We have primarily focused on alterations in the inhibitory system and have described several changes in both the inhibitory circuitry as well as in the regulation of the availability of GABA, the primary inhibitory transmitter in the central nervous system. Many of these changes also occur in an animal model of temporal lobe epilepsy, the kainate-treated rat, and we are currently studying them in greater detail.
As part of this effort, we are examining synaptic plasticity in the human material with an eye to examining the link between alterations in synaptic function and brain function.
Coauthors
Selected Publications
- Overexpression of GluR6 in rat hippocampus produces seizures and spontaneous nonsynaptic bursting in vitro.Telfeian AE, Federoff HJ, Leone P, During MJ, Williamson A. Overexpression of GluR6 in rat hippocampus produces seizures and spontaneous nonsynaptic bursting in vitro. Neurobiology Of Disease 2000, 7: 362-74. PMID: 10964607, DOI: 10.1006/nbdi.2000.0294.
- NPY inhibits glutamatergic excitation in the epileptic human dentate gyrus.Patrylo PR, van den Pol AN, Spencer DD, Williamson A. NPY inhibits glutamatergic excitation in the epileptic human dentate gyrus. Journal Of Neurophysiology 1999, 82: 478-83. PMID: 10400974, DOI: 10.1152/jn.1999.82.1.478.
- Regulation of excitability in the epileptic human hippocampus.Williamson, A. and Patrylo, P. Regulation of excitability in the epileptic human hippocampus. 1999. The Neuroscientist 5:362-370.