2025
Reduced removal of waste products from energy metabolism takes center stage in human brain aging
Mangia S, DiNuzzo M, Ponticorvo S, Dienel G, Behar K, Benveniste H, Hyder F, Giove F, Herculano-Houzel S, Petroff O, Eberly L, Filip P, Michaeli S, Rothman D. Reduced removal of waste products from energy metabolism takes center stage in human brain aging. Scientific Reports 2025, 15: 8127. PMID: 40057554, PMCID: PMC11890754, DOI: 10.1038/s41598-025-90342-3.Peer-Reviewed Original ResearchThe metabolic and cardiovascular effects of amphetamine are partially mediated by the central melanocortin system
Simonds S, Pryor J, Lam B, Dowsett G, Mustafa T, Munder A, Elysee K, Balland E, Cowley L, Yeo G, Lawrence A, Spanswick D, Cowley M. The metabolic and cardiovascular effects of amphetamine are partially mediated by the central melanocortin system. Cell Reports Medicine 2025, 6: 101936. PMID: 39914386, PMCID: PMC11866487, DOI: 10.1016/j.xcrm.2025.101936.Peer-Reviewed Original ResearchConceptsEffects of amphetamineCentral melanocortin systemCardiovascular effectsMelanocortin systemFood intakeInhibition of POMC neuronsAMPH-induced anorexiaMelanocortin 4 receptor-deficientNoradrenergic neurotransmitter systemsHeart rateBrown adipose tissueElevated blood pressureBody weightNoradrenergic inhibitionPOMC neuronsAMPH-inducedSerotonergic activityPresynaptic mechanismsNeurotransmitter systemsMC4R pathwayAmphetamineBlood pressureCardiovascular functionIncreased brown adipose tissueAdipose tissueThe other side of the incretin story: GIPR signaling in energy homeostasis
Nakandakari S, Fosam A, Perry R. The other side of the incretin story: GIPR signaling in energy homeostasis. Cell Metabolism 2025, 37: 1-3. PMID: 39778517, DOI: 10.1016/j.cmet.2024.12.003.Peer-Reviewed Original Research
2024
Astrocytic GLUT1 reduction paradoxically improves central and peripheral glucose homeostasis
Ardanaz C, de la Cruz A, Minhas P, Hernández-Martín N, Pozo M, Valdecantos M, Valverde Á, Villa-Valverde P, Elizalde-Horcada M, Puerta E, Ramírez M, Ortega J, Urbiola A, Ederra C, Ariz M, Ortiz-de-Solórzano C, Fernández-Irigoyen J, Santamaría E, Karsenty G, Brüning J, Solas M. Astrocytic GLUT1 reduction paradoxically improves central and peripheral glucose homeostasis. Science Advances 2024, 10: eadp1115. PMID: 39423276, PMCID: PMC11488540, DOI: 10.1126/sciadv.adp1115.Peer-Reviewed Original ResearchConceptsPeripheral glucose homeostasisBrain glucose metabolismGlucose metabolismAstrocytic glucose transporterGlucose homeostasisPeripheral glucose metabolismSystemic glucose metabolismATP releasePurinergic signalingBlood-borne glucoseBrain metabolismAstrocytesBrain energeticsInsulin signalingCognitive functionGlucose transportBrain functionMiceBrainGLUT1MetabolismHomeostasisObesityPhosphoglycerate kinase is a central leverage point in Parkinson’s disease–driven neuronal metabolic deficits
Kokotos A, Antoniazzi A, Unda S, Ko M, Park D, Eliezer D, Kaplitt M, De Camilli P, Ryan T. Phosphoglycerate kinase is a central leverage point in Parkinson’s disease–driven neuronal metabolic deficits. Science Advances 2024, 10: eadn6016. PMID: 39167658, PMCID: PMC11338267, DOI: 10.1126/sciadv.adn6016.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsEnergy MetabolismGlycolysisHumansMiceNeuronsParkinson DiseasePhosphoglycerate KinaseConceptsPhosphoglycerate kinase 1Metabolic deficitsExpressions of Phosphoglycerate Kinase 1Dopamine axonsParkinson's diseasePD-associated pathologyViral expressionLoss of functionNeuronal glycolysisSusceptibility lociIn vivoFamilial Parkinson's diseasePD therapeuticsMetabolic lesionsProduction kineticsKinase 1Mitochondrial integrityPhosphoglycerate kinaseBioenergetic deficitsSynaptic dysfunctionGenetic originDeficitsPARK7/DJ-1PhosphoglycerateMitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction
Rudokas M, McKay M, Toksoy Z, Eisen J, Bögner M, Young L, Akar F. Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction. Cardiovascular Diabetology 2024, 23: 261. PMID: 39026280, PMCID: PMC11264840, DOI: 10.1186/s12933-024-02357-1.Peer-Reviewed Original ResearchConceptsReactive oxygen speciesMitochondrial network remodelingDamaged mitochondrial DNAEfficiency of oxidative phosphorylationImpaired ATP productionMitochondrial ultrastructural alterationsCardiac functionDiabetic heartCellular energy metabolismProduction of reactive oxygen speciesMitochondrial DNAMitochondrial networkMitochondrial fissionExcessive production of reactive oxygen speciesOxidative phosphorylationATP productionResponse to ischemic insultGlobal cardiac functionCell deathOverall cardiac functionCardiac ischemic injuryResponse to injuryCardiac mitochondriaIrreversible cell deathMitochondriaComparative analysis of energy expenditure and costs in neuroimaging
Signorile W, Mahajan A, Fulbright R, Zubair A. Comparative analysis of energy expenditure and costs in neuroimaging. Journal Of The Neurological Sciences 2024, 460: 123001. PMID: 38616465, DOI: 10.1016/j.jns.2024.123001.Peer-Reviewed Original ResearchLocal and dynamic regulation of neuronal glycolysis in vivo
Wolfe A, Koberstein J, Smith C, Stewart M, Gonzalez I, Hammarlund M, Hyman A, Stork P, Goodman R, Colón-Ramos D. Local and dynamic regulation of neuronal glycolysis in vivo. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2314699121. PMID: 38198527, PMCID: PMC10801914, DOI: 10.1073/pnas.2314699121.Peer-Reviewed Original ResearchConceptsGlycolytic stateEnergy stressEnergy metabolismConditions of energy stressDynamic regulationNeuronal functionIndividual cell typesMitochondrial localizationGenetic analysisSubcellular regionsRegulatory enzymeCell-autonomousNeuronal identityGlycolysisCell typesMetabolic stateImaging dynamic changesMetabolismLiving organismsIn vivoCellsEnergy landscapeIndividual neuronsEnzymeDynamic changes
2023
Microglia in Central Control of Metabolism
Kim J, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology 2023, 39: 5-17. PMID: 37962895, PMCID: PMC11283896, DOI: 10.1152/physiol.00021.2023.Peer-Reviewed Original ResearchIntegrating the dynamic and energetic fields of metabolism and development
Finley L, Gendron J, Miguel-Aliaga I, Rutter J. Integrating the dynamic and energetic fields of metabolism and development. Development 2023, 150 PMID: 37883064, PMCID: PMC10765412, DOI: 10.1242/dev.202424.Commentaries, Editorials and LettersEnergy MetabolismALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m6A modification-mediated RNA stability control
Gao Y, Zimmer J, Vasic R, Liu C, Gbyli R, Zheng S, Patel A, Liu W, Qi Z, Li Y, Nelakanti R, Song Y, Biancon G, Xiao A, Slavoff S, Kibbey R, Flavell R, Simon M, Tebaldi T, Li H, Halene S. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m6A modification-mediated RNA stability control. Cell Reports 2023, 42: 113163. PMID: 37742191, PMCID: PMC10636609, DOI: 10.1016/j.celrep.2023.113163.Peer-Reviewed Original ResearchMeSH KeywordsAlkB Homolog 5, RNA DemethylaseAnimalsEnergy MetabolismHematopoietic Stem CellsHumansLeukemiaMiceRNARNA StabilityConceptsAlkB homolog 5Post-transcriptional regulatory mechanismsHematopoietic stemNumerous cellular processesProgenitor cell fitnessEnergy metabolismMitochondrial ATP productionMethyladenosine (m<sup>6</sup>A) RNA modificationTricarboxylic acid cycleCell energy metabolismHuman hematopoietic cellsMitochondrial energy productionCell fitnessCellular processesRNA modificationsRNA methylationRegulatory mechanismsEnzyme transcriptsATP productionHomolog 5Acid cycleΑ-ketoglutarateHematopoietic cellsMessenger RNAΑ-KGTargeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis
Sahu B, Razzoli M, McGonigle S, Pallais J, Nguyen M, Sadahiro M, Jiang C, Lin W, Kelley K, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham Y, Frontini A, Salton S, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. Molecular Metabolism 2023, 76: 101781. PMID: 37482186, PMCID: PMC10400922, DOI: 10.1016/j.molmet.2023.101781.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDietEnergy MetabolismHomeostasisMiceNeuropeptidesPeptide FragmentsPeptide HormonesConceptsGenetic engineering approachesUnique metabolic phenotypeMass spectrometry identificationPrecursor geneGel digestionGenetic lossTLQP-21C-terminal arginineCleavage siteGenesMutant sequencesSelective knockoutEssential roleBiological constraintsMetabolic phenotypeMouse linesEnergy homeostasisComposite phenotypeMutant miceValuable resourceVGF geneCellular allostatic load is linked to increased energy expenditure and accelerated biological aging
Bobba-Alves N, Sturm G, Lin J, Ware S, Karan K, Monzel A, Bris C, Procaccio V, Lenaers G, Higgins-Chen A, Levine M, Horvath S, Santhanam B, Kaufman B, Hirano M, Epel E, Picard M. Cellular allostatic load is linked to increased energy expenditure and accelerated biological aging. Psychoneuroendocrinology 2023, 155: 106322. PMID: 37423094, PMCID: PMC10528419, DOI: 10.1016/j.psyneuen.2023.106322.Peer-Reviewed Original ResearchConceptsCellular agingCellular energy expenditureDNA methylation clockMitochondrial oxidative phosphorylationStress adaptationMtDNA instabilityOXPHOS activityMethylation clockOxidative phosphorylationMetabolic shiftEnergetic costHuman fibroblast lineCellular basisPhysiological responsesFibroblast linesStress triggersPotential driversBiological agingEnergy expenditureChronic activationLifespanDamaging effectsPrimary human fibroblast linesCytokine secretionPhosphorylationTranslational and transdisciplinary research in energy balance and cancer: past is prologue
Irwin M, Sears D, Ligibel J. Translational and transdisciplinary research in energy balance and cancer: past is prologue. JNCI Monographs 2023, 2023: 1-2. PMID: 37139974, PMCID: PMC10157745, DOI: 10.1093/jncimonographs/lgad009.Peer-Reviewed Original ResearchA review of the impact of energy balance on triple-negative breast cancer
Akingbesote N, Owusu D, Liu R, Cartmel B, Ferrucci L, Zupa M, Lustberg M, Sanft T, Blenman K, Irwin M, Perry R. A review of the impact of energy balance on triple-negative breast cancer. JNCI Monographs 2023, 2023: 104-124. PMID: 37139977, DOI: 10.1093/jncimonographs/lgad011.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsTriple-negative breast cancerInterventional studyBreast cancerCancer treatmentClinical interventional studyClinical observationalImmune activationCancer outcomesCancer careClinical studiesOverall healthEnergy intakeNarrative reviewCancer cellsEnergy expenditureCancerTreatmentEnergy balanceOutcomesExerciseReviewDetrimental effectsImmunotherapyStudyIntake
2022
Paraventricular glia drive circuit function to control metabolism
Varela L, Horvath TL. Paraventricular glia drive circuit function to control metabolism. Cell Metabolism 2022, 34: 1424-1426. PMID: 36198288, DOI: 10.1016/j.cmet.2022.09.012.Peer-Reviewed Original ResearchUbiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle
Bogan JS. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle. Frontiers In Endocrinology 2022, 13: 1019405. PMID: 36246906, PMCID: PMC9556833, DOI: 10.3389/fendo.2022.1019405.Peer-Reviewed Original ResearchConceptsGolgi matrixTUG ProteinVesicle cargoC-terminal productInsulin stimulationN-degron pathwayGLUT4 storage vesiclesCell surfaceUbiquitin-like proteinGLUT4 glucose transportersGlucose uptakeAspects of physiologyN-terminal cleavage productMuscle cellsP97 ATPaseCleavage productsC-terminusFatty acid oxidationGene expressionSingle proteinN-terminusMatrix proteinsEndoproteolytic cleavageCell typesGlucose transportermiR-130b/301b Is a Negative Regulator of Beige Adipogenesis and Energy Metabolism In Vitro and In Vivo.
Luo W, Kim Y, Jensen M, Herlea-Pana O, Wang W, Rudolph M, Friedman J, Chernausek S, Jiang S. miR-130b/301b Is a Negative Regulator of Beige Adipogenesis and Energy Metabolism In Vitro and In Vivo. Diabetes 2022, 71: 2360-2371. PMID: 36001751, PMCID: PMC9630090, DOI: 10.2337/db22-0205.Peer-Reviewed Original ResearchConceptsBeige adipogenesisMiR-301bMiR-130bPeroxisome proliferator-activated receptor γ coactivator 1αProliferator-activated receptor γ coactivator 1αImproved glucose toleranceReceptor γ coactivator 1αLess weight gainPotential therapeutic targetCold-induced energy expenditureΓ coactivator 1αMitochondrial biogenesisMetabolic complicationsVisceral adiposityGlucose toleranceThermogenic brownCounteract obesityMetabolic disordersTherapeutic targetAdipose tissueBeige phenotypeMetabolic diseasesAdipose progenitor cellsBeige adipocytesCoactivator 1αFossil biomolecules reveal an avian metabolism in the ancestral dinosaur
Wiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DEG. Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature 2022, 606: 522-526. PMID: 35614213, DOI: 10.1038/s41586-022-04770-6.Peer-Reviewed Original ResearchConceptsHigh metabolic rateCretaceous mass extinctionTerminal Cretaceous mass extinctionLate Cretaceous taxaMetabolic rateCrown mammalsAvian lineagesAncestral stateEcological nichesGiant sauropodsCretaceous taxaMammalsMetabolic abilitiesMetabolic performanceMass extinctionBirdsPhysiological activityEndothermyAvian metabolismCostly adaptationsMetabolismVivo accumulationTheropodsOrnithischiansEctothermsBrown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance
Huang Y, Zhou JH, Zhang H, Canfrán-Duque A, Singh AK, Perry RJ, Shulman G, Fernandez-Hernando C, Min W. Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. Journal Of Clinical Investigation 2022, 132 PMID: 35202005, PMCID: PMC9057632, DOI: 10.1172/jci148852.Peer-Reviewed Original ResearchConceptsBrown adipose tissueBAT inflammationInsulin resistanceMitochondrial reactive oxygen speciesReactive oxygen speciesAberrant innate immune responsesDiet-induced insulin resistanceSystematic metabolismDiet-induced obesityNLRP3 inflammasome pathwayWhole-body energy metabolismCGAS/STINGInnate immune responseFatty acid oxidationExcessive mitochondrial reactive oxygen speciesMetabolic benefitsImmune responseInflammasome pathwayAdipose tissueInflammationInhibition reversesLipid uptakeLipid metabolismThioredoxin 2Adaptive thermogenesis
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply