2025
PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors
DeSpenza T, Kiziltug E, Allington G, Barson D, McGee S, O’Connor D, Robert S, Mekbib K, Nanda P, Greenberg A, Singh A, Duy P, Mandino F, Zhao S, Lynn A, Reeves B, Marlier A, Getz S, Nelson-Williams C, Shimelis H, Walsh L, Zhang J, Wang W, Prina M, OuYang A, Abdulkareem A, Smith H, Shohfi J, Mehta N, Dennis E, Reduron L, Hong J, Butler W, Carter B, Deniz E, Lake E, Constable R, Sahin M, Srivastava S, Winden K, Hoffman E, Carlson M, Gunel M, Lifton R, Alper S, Jin S, Crair M, Moreno-De-Luca A, Luikart B, Kahle K. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nature Neuroscience 2025, 28: 536-557. PMID: 39994410, DOI: 10.1038/s41593-024-01865-3.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsCongenital hydrocephalusCSF dynamicsIncreased CSF productionDe novo mutationsFrequent monogenic causeEverolimus treatmentCSF shuntingNonsurgical treatmentPTEN mutationsAqueductal stenosisInhibitory interneuronsVentriculomegalyProgenitor cellsChoroid plexusMonogenic causeCortical networksIncreased survivalBrain ventriclesCortical deficitsNeural progenitorsGene PTENCSF productionNkx2.1PTEN
2022
A neural stem cell paradigm of pediatric hydrocephalus
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cerebral Cortex 2022, 33: 4262-4279. PMID: 36097331, PMCID: PMC10110448, DOI: 10.1093/cercor/bhac341.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCerebral VentriclesChildHumansHydrocephalusNeural Stem CellsNeurosurgical ProceduresConceptsPediatric hydrocephalusPrimary treatment strategyOptimal surgical managementDevelopmental brain malformationsAnimal model studiesSurgical managementCerebral ventricleCSF diversionVentricular distentionHydrocephalic childrenTreatment strategiesBrain malformationsNeurodevelopmental disabilitiesGerminal neuroepitheliumHydrocephalusStem cell paradigmNeural stem cell fateRecent human geneticBrain surgeryCSF circulationBrain ventriclesCSF volumeNeuroprogenitor cellsBrain defectsCSF homeostasisBrain ventricles as windows into brain development and disease
Duy PQ, Rakic P, Alper SL, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. Brain ventricles as windows into brain development and disease. Neuron 2022, 110: 12-15. PMID: 34990576, PMCID: PMC9212067, DOI: 10.1016/j.neuron.2021.12.009.Peer-Reviewed Original Research
2021
Comparative anatomy of dissected optic lobes, optic ventricles, midbrain tectum, collicular ventricles, and aqueduct: evolutionary modifications as potential explanation for non-tumoral aqueductal anomalies in humans
Kier E, Kalra V, Conlogue G, Filippi C, Saluja S. Comparative anatomy of dissected optic lobes, optic ventricles, midbrain tectum, collicular ventricles, and aqueduct: evolutionary modifications as potential explanation for non-tumoral aqueductal anomalies in humans. Child's Nervous System 2021, 38: 287-294. PMID: 34812897, PMCID: PMC8789712, DOI: 10.1007/s00381-021-05408-0.Peer-Reviewed Original ResearchMeSH KeywordsAnatomy, ComparativeAnimalsCerebral AqueductCerebral VentriclesDogsHumansHydrocephalusMammalsRabbitsTectum MesencephaliConceptsEvolutionary modificationsVertebrate materialMammalian componentsTectum structuresAdult sharksNeocortical expansionVertebratesComparative anatomyOptic lobeRelative size changesContinuous cavityOptic ventricleMammalsSharksSize changesFrogsIguanasOccipital lobeModificationMidbrain tectumMidbrain tectum structuresTectumPotential explanationAqueductal stenosisCerebral ventricleGenomics of human congenital hydrocephalus
Kundishora AJ, Singh AK, Allington G, Duy PQ, Ryou J, Alper SL, Jin SC, Kahle KT. Genomics of human congenital hydrocephalus. Child's Nervous System 2021, 37: 3325-3340. PMID: 34232380, DOI: 10.1007/s00381-021-05230-8.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusBrain developmentPoor neurodevelopmental outcomesRecent whole-exome sequencing studiesPost-surgical patientsHuman congenital hydrocephalusPathogenesis of hydrocephalusCerebrospinal fluid accumulationDamaging de novoPrimary pathomechanismEarly brain developmentNeural stem cell growthNeurodevelopmental outcomesOutcome prognosticationHuman brain developmentCSF diversionTreatment stratificationWhole-exome sequencing studiesFluid accumulationBrain ventriclesClinical toolHydrocephalusGenetic counselingDisease mechanismsSubstantial minorityIntraventricular CSF Turbulence in Pediatric Communicating Hydrocephalus
Duy PQ, Kahle KT. Intraventricular CSF Turbulence in Pediatric Communicating Hydrocephalus. Neurology 2021, 97: 246-247. PMID: 34031199, PMCID: PMC8589266, DOI: 10.1212/wnl.0000000000012237.Peer-Reviewed Original ResearchConceptsProgressive macrocephalyCSF turbulenceLower extremity motor functionDiffuse cortical atrophyExtremity motor functionMild neurocognitive impairmentCommunicating hydrocephalusVentriculoperitoneal shuntCortical atrophyIntracranial hemorrhagePhysical examinationPostoperative imagingComplete resolutionIntracranial pressureMotor functionHead circumferenceOpen myelomeningoceleNeurocognitive impairmentMild decreaseCSF flowVentriculomegalyMacrocephaly
2020
Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine 2020, 26: 1754-1765. PMID: 33077954, PMCID: PMC7871900, DOI: 10.1038/s41591-020-1090-2.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusPoor neurodevelopmental outcomesPost-surgical patientsCerebrospinal fluid accumulationNeural stem cell biologyGenetic disruptionWhole-exome sequencingPrimary pathomechanismEarly brain developmentNeurodevelopmental outcomesHigh morbidityCSF diversionMutation burdenFluid accumulationBrain ventriclesCH casesBrain developmentDe novo mutationsPatientsExome sequencingCSF dynamicsDisease mechanismsHydrocephalusNovo mutationsCell types
2019
Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus
Date P, Ackermann P, Furey C, Fink IB, Jonas S, Khokha MK, Kahle KT, Deniz E. Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus. Scientific Reports 2019, 9: 6196. PMID: 30996265, PMCID: PMC6470164, DOI: 10.1038/s41598-019-42549-4.Peer-Reviewed Original ResearchConceptsCSF flow dynamicsCongenital hydrocephalusOptical coherence tomographyCH pathophysiologyVentricular systemCoherence tomographyBrain developmentCurrent treatment modalitiesHuman congenital hydrocephalusCerebrospinal fluid flowAqueductal stenosisCerebral ventricleNeurosurgical indicationsTreatment modalitiesSurgery techniquesBrain ventriclesEpendymal ciliaCSF flowCiliary dysfunctionHuman L1CAMHydrocephalus pathogenesisVivo investigationsHydrocephalusPathophysiologyVentricle
2017
Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus
Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, Vera A, DiLuna ML, Delpire E, Alper SL, Gunel M, Gerzanich V, Medzhitov R, Simard JM, Kahle KT. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nature Medicine 2017, 23: 997-1003. PMID: 28692063, DOI: 10.1038/nm.4361.Peer-Reviewed Original ResearchMeSH KeywordsAcetazolamideAnimalsAntioxidantsBlotting, WesternBumetanideCerebral HemorrhageCerebral VentriclesCerebrospinal FluidChoroid PlexusDiureticsGene Knockdown TechniquesGene Knockout TechniquesHydrocephalusImmunoblottingImmunohistochemistryImmunoprecipitationInflammationNF-kappa BProlineProtein Serine-Threonine KinasesRatsRats, WistarSalicylanilidesSolute Carrier Family 12, Member 2SulfonamidesThiocarbamatesToll-Like Receptor 4
2016
Periventricular hyperintensities are associated with elevated cerebral amyloid
Marnane M, Al-Jawadi OO, Mortazavi S, Pogorzelec KJ, Wang BW, Feldman HH, Hsiung GY, Weiner M, Aisen P, Weiner M, Aisen P, Petersen R, Jack C, Jagust W, Trojanowki J, Toga A, Beckett L, Green R, Saykin A, Morris J, Liu E, Green R, Montine T, Petersen R, Aisen P, Gamst A, Thomas R, Donohue M, Walter S, Gessert D, Sather T, Beckett L, Harvey D, Gamst A, Donohue M, Kornak J, Jack C, Dale A, Bernstein M, Felmlee J, Fox N, Thompson P, Schuff N, Alexander G, DeCarli C, Jagust W, Bandy D, Koeppe R, Foster N, Reiman E, Chen K, Mathis C, Morris J, Cairns N, Taylor-Reinwald L, Trojanowki J, Shaw L, Lee V, Korecka M, Toga A, Crawford K, Neu S, Saykin A, Foroud T, Potkin S, Shen L, Kachaturian Z, Frank R, Snyder P, Molchan S, Kaye J, Quinn J, Lind B, Dolen S, Schneider L, Pawluczyk S, Spann B, Brewer J, Vanderswag H, Heidebrink J, Lord J, Petersen R, Johnson K, Doody R, Villanueva-Meyer J, Chowdhury M, Stern Y, Honig L, Bell K, Morris J, Ances B, Carroll M, Leon S, Mintun M, Schneider S, Marson D, Griffith R, Clark D, Grossman H, Mitsis E, Romirowsky A, deToledo-Morrell L, Shah R, Duara R, Varon D, Roberts P, Albert M, Onyike C, Kielb S, Rusinek H, de Leon M, Glodzik L, De Santi S, Doraiswamy P, Petrella J, Coleman R, Arnold S, Karlawish J, Wolk D, Smith C, Jicha G, Hardy P, Lopez O, Oakley M, Simpson D, Porsteinsson A, Goldstein B, Martin K, Makino K, Ismail M, Brand C, Mulnard R, Thai G, Mc-Adams-Ortiz C, Womack K, Mathews D, Quiceno M, Diaz-Arrastia R, King R, Weiner M, Martin-Cook K, DeVous M, Levey A, Lah J, Cellar J, Burns J, Anderson H, Swerdlow R, Apostolova L, Lu P, Bartzokis G, Silverman D, Graff-Radford N, Parfitt F, Johnson H, Farlow M, Hake A, Matthews B, Herring S, van Dyck C, Carson R, MacAvoy M, Chertkow H, Bergman H, Hosein C, Black S, Stefanovic B, Caldwell C, Robin Hsiung G, Feldman H, Mudge B, Assaly M, Kertesz A, Rogers J, Trost D, Bernick C, Munic D, Kerwin D, Mesulam M, Lipowski K, Wu C, Johnson N, Sadowsky C, Martinez W, Villena T, Turner R, Johnson K, Reynolds B, Sperling R, Johnson K, Marshall G, Frey M, Yesavage J, Taylor J, Lane B, Rosen A, Tinklenberg J, Sabbagh M, Belden C, Jacobson S, Kowall N, Killiany R, Budson A, Norbash A, Johnson P, Obisesan T, Wolday S, Bwayo S, Lerner A, Hudson L, Ogrocki P, Fletcher E, Carmichael O, Olichney J, DeCarli C, Kittur S, Borrie M, Lee T, Bartha D, Johnson S, Asthana S, Carlsson C, Potkin S, Preda A, Nguyen D, Tariot P, Fleisher A, Reeder S, Bates V, Capote H, Rainka M, Scharre D, Kataki M, Zimmerman E, Celmins D, Brown A, Pearlson G, Blank K, Anderson K, Saykin A, Santulli R, Schwartz E, Sink K, Williamson J, Garg P, Watkins F, Ott B, Querfurth H, Tremont G, Salloway S, Malloy P, Correia S, Rosen H, Miller B, Mintzer J, Longmire C, Spicer K, Finger E, Rachinsky I, Rogers J, Kertesz A, Drost D, Pomara N, Hernando R, Sarrael A, Schultz S, Boles Ponto L, Shim H, Smith K, Relkin N, Chaing G, Raudin L, Smith A, Fargher K, Raj B. Periventricular hyperintensities are associated with elevated cerebral amyloid. Neurology 2016, 86: 535-543. PMID: 26747881, PMCID: PMC4753726, DOI: 10.1212/wnl.0000000000002352.Peer-Reviewed Original ResearchConceptsVascular risk factorsCerebral amyloidLogistic regression modelsMild cognitive impairmentCSF AβRisk factorsDisease Neuroimaging InitiativeProspective multicenter observational studyFluid-attenuated inversion recovery MRICerebral β-amyloidCSF Aβ levelsMulticenter observational studySecondary prevention medicationsSemiquantitative visual rating scalesLow CSF AβAgreement intraclass correlation coefficientsInversion recovery MRIVisual rating scaleIntraclass correlation coefficientAlzheimer's Disease Neuroimaging InitiativeCSF-phosphoCerebral hypometabolismPrevention medicationsPeriventricular hyperintensityRegression models
2015
Genes and environment in neonatal intraventricular hemorrhage
Ment LR, Ådén U, Bauer CR, Bada HS, Carlo WA, Kaiser JR, Lin A, Cotten CM, Murray J, Page G, Hallman M, Lifton RP, Zhang H, Network O. Genes and environment in neonatal intraventricular hemorrhage. Seminars In Perinatology 2015, 39: 592-603. PMID: 26516117, PMCID: PMC4668116, DOI: 10.1053/j.semperi.2015.09.006.Peer-Reviewed Original ResearchConceptsIntraventricular hemorrhagePreterm neonatesLow birth weight preterm neonatesSevere intraventricular hemorrhageWeight preterm neonatesNeonatal intraventricular hemorrhageCerebral blood flowBlood flowVascular pathwaysCandidate gene studiesGenetic factorsComplex disorderHemorrhageNeonatesAngiogenesisGene studiesGenome-wide association studies
2013
Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain
Shook BA, Lennington JB, Acabchuk RL, Halling M, Sun Y, Peters J, Wu Q, Mahajan A, Fellows DW, Conover JC. Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain. Aging Cell 2013, 13: 340-350. PMID: 24341850, PMCID: PMC3954884, DOI: 10.1111/acel.12184.Peer-Reviewed Original ResearchConceptsAged humansPeriventricular tissueVentricle enlargementGlial scarringEpendymal cell lossEpendymal cell liningPeriventricular gliosisReactive gliosisHistological featuresDegenerative lossLateral ventricleGliosisMouse modelVentricular expansionVentricle liningAquaporin-4Barrier integrityEpendymal cellsLateral ventricle surfaceCell lossMouse brainVentriculomegalyCell liningMiceScarringGene–environment interactions in severe intraventricular hemorrhage of preterm neonates
Ment LR, Ådén U, Lin A, Kwon SH, Choi M, Hallman M, Lifton RP, Zhang H, Bauer CR. Gene–environment interactions in severe intraventricular hemorrhage of preterm neonates. Pediatric Research 2013, 75: 241-250. PMID: 24192699, PMCID: PMC3946468, DOI: 10.1038/pr.2013.195.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApgar ScoreBlood CoagulationCerebral VentriclesCerebrovascular CirculationCollagen Type IVFactor VGene-Environment InteractionGenetic Predisposition to DiseaseGenetic VariationGestational AgeHumansHypoxia, BrainInfantInfant, PrematureInflammation MediatorsIntracranial HemorrhagesMethylenetetrahydrofolate Reductase (NADPH2)PhenotypePremature BirthPrognosisRisk FactorsConceptsIntraventricular hemorrhageCerebral injuryPreterm neonatesFactor V Leiden geneRisk of IVHEnvironmental triggersSevere intraventricular hemorrhageCerebral blood flowMethylenetetrahydrofolate reductase (MTHFR) variantsUnknown environmental triggersPresence of mutationsPeriventricular infarctionApgar scorePerinatal hypoxiaPreclinical dataFetal environmentGerminal matrixCerebral vasculatureBlood flowT polymorphismGene-environment interactionsMTHFR 677CHemorrhageNeonatesVascular pathwaysModeling the Neurovascular Niche: Unbiased Transcriptome Analysis of the Murine Subventricular Zone in Response to Hypoxic Insult
Li Q, Canosa S, Flynn K, Michaud M, Krauthammer M, Madri JA. Modeling the Neurovascular Niche: Unbiased Transcriptome Analysis of the Murine Subventricular Zone in Response to Hypoxic Insult. PLOS ONE 2013, 8: e76265. PMID: 24146847, PMCID: PMC3795763, DOI: 10.1371/journal.pone.0076265.Peer-Reviewed Original ResearchConceptsSubventricular zoneRepair/recoveryChronic hypoxiaPremature infant populationMurine subventricular zoneEarly intervention approachesNeurodevelopmental handicapPremature infantsNeurovascular nicheHypoxic insultCD1 miceInfant populationMotor responsivenessCNS tissueDisease severityMRNA expressionUnbiased transcriptome analysisDifferent behavioral parametersNeural functionMouse strainsDifferential responseHypoxiaHypoxic conditionsRange of responsivenessIntervention approachesCortical Gyrification Induced by Fibroblast Growth Factor 2 in the Mouse Brain
Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM. Cortical Gyrification Induced by Fibroblast Growth Factor 2 in the Mouse Brain. Journal Of Neuroscience 2013, 33: 10802-10814. PMID: 23804101, PMCID: PMC3693057, DOI: 10.1523/jneurosci.3621-12.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntimetabolitesAxonsBrain ChemistryBromodeoxyuridineCell CountCerebral CortexCerebral VentriclesDensitometryDependovirusDNA, ComplementaryFemaleFibroblast Growth Factor 2Green Fluorescent ProteinsImmunohistochemistryIn Situ HybridizationLymphoid Enhancer-Binding Factor 1MiceNeocortexPregnancyReal-Time Polymerase Chain ReactionRNAWnt3A ProteinConceptsVentricular zoneIntermediate neuronal progenitorsSubventricular zoneCortical gyrificationCortical primordiumRegion-specific actionsFibroblast growth factor-2ER81 expressionGrowth factor 2Ventricular injectionCortical layer structureBasal radial gliaCortical gyriRadial gliaMouse brainCortical hemEmbryonic day 11.5Neuronal progenitorsGyrus formationLEF1 expressionGyrificationNeurogenesisLissencephalic speciesFactor 2Impaired growthRheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-Sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons
Lafourcade CA, Lin TV, Feliciano DM, Zhang L, Hsieh LS, Bordey A. Rheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-Sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons. Journal Of Neuroscience 2013, 33: 2419-2431. PMID: 23392671, PMCID: PMC3711634, DOI: 10.1523/jneurosci.1840-12.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCell DifferentiationCell EnlargementCell Line, TumorCell MovementCerebral VentriclesDendritesElectroporationFemaleHypertrophyMaleMiceMonomeric GTP-Binding ProteinsNeural Stem CellsNeurogenesisNeuronsNeuropeptidesOlfactory BulbRas Homolog Enriched in Brain ProteinSirolimusStem CellsTOR Serine-Threonine KinasesConceptsNeural progenitor cellsWild-type miceOlfactory bulbMTOR activitySynaptic inputsEctopic neuronal differentiationSubventricular zone neural progenitor cellsActive ras homologNeuronal differentiationGABAergic synaptic inputsTsc1 mutant miceSubventricular zone progenitorsDendritic complexityNewborn neuronsTuberous sclerosisOlig2 cellsHyperactive mTORHeterozygote miceCircuit formationAction potentialsNeuronal morphologyNewborn cellsMutant miceEctopic cellsMammalian target
2012
Neural Progenitor Cells Regulate Capillary Blood Flow in the Postnatal Subventricular Zone
Lacar B, Herman P, Platel JC, Kubera C, Hyder F, Bordey A. Neural Progenitor Cells Regulate Capillary Blood Flow in the Postnatal Subventricular Zone. Journal Of Neuroscience 2012, 32: 16435-16448. PMID: 23152626, PMCID: PMC3520061, DOI: 10.1523/jneurosci.1457-12.2012.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsAnimals, NewbornAstrocytesCalcium SignalingCapillariesCerebral VentriclesCerebrovascular CirculationElectric StimulationElectroporationFemaleFluorescent Antibody TechniqueImage Processing, Computer-AssistedLaser-Doppler FlowmetryMaleMiceMuscle TonusMuscle, Smooth, VascularNeural Stem CellsPericytesVasoconstrictionVasodilationConceptsNeural progenitor cellsSubventricular zoneB cellsBlood flowSVZ cellsPurinergic receptorsPostnatal subventricular zoneVascular responsesCapillary constrictionTransgenic miceElectrical stimulationCalcium increaseBlood flow increasesLaser Doppler flowmetryCapillary blood flowAstrocyte-like cellsReceptor agonist UTPNeonatal electroporationNeurometabolic couplingIntraventricular injectionVasodilating factorsAcute slicesYoung miceDoppler flowmetryHemodynamic responseNKCC1 Knockdown Decreases Neuron Production through GABAA-Regulated Neural Progenitor Proliferation and Delays Dendrite Development
Young SZ, Taylor MM, Wu S, Ikeda-Matsuo Y, Kubera C, Bordey A. NKCC1 Knockdown Decreases Neuron Production through GABAA-Regulated Neural Progenitor Proliferation and Delays Dendrite Development. Journal Of Neuroscience 2012, 32: 13630-13638. PMID: 23015452, PMCID: PMC3478384, DOI: 10.1523/jneurosci.2864-12.2012.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornCalciumCell CountCell DifferentiationCell ProliferationCells, CulturedCerebral VentriclesDendritesEgtazic AcidElectroporationFemaleGABA ModulatorsGABA-A Receptor AgonistsGreen Fluorescent ProteinsIn Vitro TechniquesKi-67 AntigenLuminescent ProteinsMaleMiceMuscimolNeural Stem CellsNeuronsOlfactory BulbPatch-Clamp TechniquesPentobarbitalReceptors, GABA-ARNA, Small InterferingSodium-Potassium-Chloride SymportersSolute Carrier Family 12, Member 2SOXB1 Transcription FactorsTransfectionConceptsNPC proliferationDecreased neuronal densityTotal dendritic lengthNeonatal subventricular zoneNeural stem cell proliferationNeural progenitor cell developmentNeural progenitor proliferationShort hairpin RNADendritic complexityDendritic lengthNeuronal densityNewborn neuronsDendritic arborizationNeuron densityDendritic developmentSubventricular zoneNeuron productionCalcium responseSynaptic integrationNKCC1 knockdownPentobarbital effectsAllosteric agonistDendritic treeProgenitor cell developmentCotransporter NKCC1miR-132 Enhances Dendritic Morphogenesis, Spine Density, Synaptic Integration, and Survival of Newborn Olfactory Bulb Neurons
Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, Teng ZQ, Zhao X, Fulga TA, Van Vactor D, Bordey A. miR-132 Enhances Dendritic Morphogenesis, Spine Density, Synaptic Integration, and Survival of Newborn Olfactory Bulb Neurons. PLOS ONE 2012, 7: e38174. PMID: 22693596, PMCID: PMC3364964, DOI: 10.1371/journal.pone.0038174.Peer-Reviewed Original ResearchConceptsOlfactory bulb neuronsSynaptic integrationMiR-132Bulb neuronsSpine densityFrequency of GABAergicGlutamatergic synaptic inputsSubventricular zone neurogenesisMiR-132 overexpressionMiR-132 expressionMicroRNA miR-132Neonatal SVZTransplanted neuronsDendritic complexityNewborn neuronsNeuronal survivalPostnatal neurogenesisSynaptic inputsTransplant therapyDendritic morphogenesisNeuronsVivo electroporationSurvivalSignificant increasePlasticity program
2011
Combined metopic and sagittal craniosynostosis: is it worse than sagittal synostosis alone?
Terner JS, Travieso R, Lee SS, Forte AJ, Patel A, Persing JA. Combined metopic and sagittal craniosynostosis: is it worse than sagittal synostosis alone? Neurosurgical FOCUS 2011, 31: e2. PMID: 21806341, DOI: 10.3171/2011.6.focus11100.Peer-Reviewed Original ResearchMeSH KeywordsBrainCerebral VentriclesCerebral VentriculographyCraniosynostosesFemaleHumansInfantMaleOrgan SizeRetrospective StudiesConceptsMonths of ageSmaller intracranial volumeBrain dysfunctionIntracranial volumeSagittal synostosisPatient groupVentricular volumeAge groupsSagittal craniosynostosisCSF spaceBrain volume reductionBrain tissue volumesSex-matched controlsSame age groupVolume reductionRetrospective chartFemale patientsForms of craniosynostosisSagittal synostosesPatientsYoung infantsBrain tissueCT reviewIntracranial compartmentDysfunction
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply