2025
PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors
DeSpenza T, Kiziltug E, Allington G, Barson D, McGee S, O’Connor D, Robert S, Mekbib K, Nanda P, Greenberg A, Singh A, Duy P, Mandino F, Zhao S, Lynn A, Reeves B, Marlier A, Getz S, Nelson-Williams C, Shimelis H, Walsh L, Zhang J, Wang W, Prina M, OuYang A, Abdulkareem A, Smith H, Shohfi J, Mehta N, Dennis E, Reduron L, Hong J, Butler W, Carter B, Deniz E, Lake E, Constable R, Sahin M, Srivastava S, Winden K, Hoffman E, Carlson M, Gunel M, Lifton R, Alper S, Jin S, Crair M, Moreno-De-Luca A, Luikart B, Kahle K. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nature Neuroscience 2025, 28: 536-557. PMID: 39994410, DOI: 10.1038/s41593-024-01865-3.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsCongenital hydrocephalusCSF dynamicsIncreased CSF productionDe novo mutationsFrequent monogenic causeEverolimus treatmentCSF shuntingNonsurgical treatmentPTEN mutationsAqueductal stenosisInhibitory interneuronsVentriculomegalyProgenitor cellsChoroid plexusMonogenic causeCortical networksIncreased survivalBrain ventriclesCortical deficitsNeural progenitorsGene PTENCSF productionNkx2.1PTENHigher-order thalamic input to cortex selectively conveys state information
Neske G, Cardin J. Higher-order thalamic input to cortex selectively conveys state information. Cell Reports 2025, 44: 115292. PMID: 39937647, PMCID: PMC11920878, DOI: 10.1016/j.celrep.2025.115292.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCerebral CortexFemaleMaleMiceMice, Inbred C57BLNeuronsOptogeneticsThalamusVisual CortexConceptsHigher-order thalamic nucleiHigher-order visual thalamusHigher-order thalamusCortical sensory processingCorticocortical communicationVisual thalamusImaging of neuronsMedial visual cortexStrong synaptic inputVisual cortexContextual signalsVisual informationCortical areasThalamic inputRelay of informationSynaptic inputsCorticocortical projectionsSensory peripheryThalamic nucleiCortical neuronsThalamocortical projectionsAxon terminalsOptogenetic manipulationNeocortical areasInformationThe etiology and prevention of early‐stage tau pathology in higher cortical circuits: Insights from aging rhesus macaques
Datta D, Arnsten A. The etiology and prevention of early‐stage tau pathology in higher cortical circuits: Insights from aging rhesus macaques. Alzheimer's & Dementia 2025, 21: e14477. PMID: 39776253, PMCID: PMC11848412, DOI: 10.1002/alz.14477.Peer-Reviewed Original ResearchConceptsAged macaquesAged rhesus macaquesP-tauTau hyperphosphorylationCortical circuitsAmyloid-beta generationSoluble phosphorylated tauCognitive deficitsAged monkeysSoluble hyperphosphorylated tauSporadic Alzheimer's diseaseAssociation cortexEarly-stage pathologyRhesus macaquesIncreased ABCalcium dysregulationCalcium regulationToxic to neuronsHyperphosphorylated tauAmyloid-betaCortexInflammatory signalingP-tau217 levelsTau pathologyPhosphorylated tauChronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex
Hauptman J, Antonios J, Mathern G, Levine M, Cepeda C. Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex. Cells 2025, 14: 79. PMID: 39851507, PMCID: PMC11764219, DOI: 10.3390/cells14020079.Peer-Reviewed Original ResearchConceptsCortical pyramidal neuronsMice treated with rapamycinGABA releasePTEN deletionWhole-cell patch-clamp recordingsMiniature inhibitory postsynaptic currentsEx vivo slicesNeuronal somatic sizeReduced neuronal firingInhibitory postsynaptic currentsChronic rapamycin treatmentPatch-clamp recordingsIncreased input resistanceInhibitory synaptic inputsDevelopmental brain disordersRapamycin treatmentIncreased membrane capacitanceConditional mouse modelChronic treatmentPostsynaptic currentsClamp recordingsNaive miceSynaptic excitationBrain disordersControl mice
2024
Stepwise pathways from the olfactory cortex to central hub regions in the human brain
Menelaou G, Diez I, Zelano C, Zhou G, Persson J, Sepulcre J, Olofsson J. Stepwise pathways from the olfactory cortex to central hub regions in the human brain. Human Brain Mapping 2024, 45: e26760. PMID: 39688149, PMCID: PMC11651219, DOI: 10.1002/hbm.26760.Peer-Reviewed Original ResearchConceptsDefault-mode networkCortical hubsHuman brainDefault-mode network regionsAnterior olfactory nucleusFunctional connectivity researchProcessing rewardOrbitofrontal cortexAnterior insulaOlfactory tubercleFrontal sulcusPiriform cortexOlfactory cortexCortical subregionsOlfactory nucleusAssociation cortexLanguage acquisitionParietal operculumNeural activityTemporal regionsCortical networksSynchronous neural activityOlfactory pathwaySensory cortexOlfactory systemThe early-onset Alzheimer’s disease MRI signature: a replication and extension analysis in early-stage AD
Mehta R, Keith C, Teixeira C, Worhunsky P, Phelps H, Ward M, Miller M, Navia R, Pockl S, Rajabalee N, Coleman M, D’Haese P, Rezai A, Wilhelmsen K, Haut M. The early-onset Alzheimer’s disease MRI signature: a replication and extension analysis in early-stage AD. Cerebral Cortex 2024, 34: bhae475. PMID: 39714256, PMCID: PMC11664631, DOI: 10.1093/cercor/bhae475.Peer-Reviewed Original ResearchMeSH KeywordsAge of OnsetAgedAlzheimer DiseaseAtrophyBrainCerebral CortexCohort StudiesFemaleHumansMagnetic Resonance ImagingMaleMiddle AgedConceptsEarly-onset Alzheimer's diseaseLate-onset Alzheimer's diseaseNon-AD pathologyCognitively normal individualsManagement of personsCortical atrophyFunctional statusEarly-stage ADRural populationAlzheimer's diseaseDisease stageLongitudinal studyCortical signatureWhole-brainCortical thinningCortical analysisClinical cohortNormal individualsClinical effectsSignature regionsIndividualsPersonsEarly disease stagesMRI signaturesA function-based mapping of sensory integration along the cortical hierarchy
Wei W, Benn R, Scholz R, Shevchenko V, Klatzmann U, Alberti F, Chiou R, Wassermann D, Vanderwal T, Smallwood J, Margulies D. A function-based mapping of sensory integration along the cortical hierarchy. Communications Biology 2024, 7: 1593. PMID: 39613829, PMCID: PMC11607388, DOI: 10.1038/s42003-024-07224-z.Peer-Reviewed Original ResearchMeSH KeywordsAdultBrain MappingCerebral CortexCognitionFemaleHumansMagnetic Resonance ImagingMaleSensationYoung AdultConceptsPrimary sensory signalsCognitive functionSensory integrationHigher-order cognitive functionsSensory information processingSensory signalsFunctional decodingTransmodal regionsPercentage of varianceCognitive demandsSensory processingHuman cognitionCortical hierarchyBrain statesSensory modalitiesInformation processingSensory magnitudeSensory informationPrimary cortexIntegrity changesFMRICognitionCortexBrainDecoding cortical chronotopy—Comparing the influence of different cortical organizational schemes
Mecklenbrauck F, Sepulcre J, Fehring J, Schubotz R. Decoding cortical chronotopy—Comparing the influence of different cortical organizational schemes. NeuroImage 2024, 303: 120914. PMID: 39491762, DOI: 10.1016/j.neuroimage.2024.120914.Peer-Reviewed Original ResearchConceptsRich-clubInter-subject correlationStructural rich clubNetwork module structureLevels of cognitive controlInter-subject correlation analysisGraph-theoretic measures of centralityResting-state fMRIHigher cortical areasOrganizational schemeMode of processingIntrinsic timescalesBayesian model comparisonCognitive controlTask fMRIDiffusion-weighted imaging dataCortical regionsModulated structureTimescalesCortical areasNetwork hubsDigital sequencesCytoarchitectural differencesMeasures of centralityModel comparisonChanges in the structure of spontaneous speech predict the disruption of hierarchical brain organization in first‐episode psychosis
He R, Alonso‐Sánchez M, Sepulcre J, Palaniyappan L, Hinzen W. Changes in the structure of spontaneous speech predict the disruption of hierarchical brain organization in first‐episode psychosis. Human Brain Mapping 2024, 45: e70030. PMID: 39301700, PMCID: PMC11413563, DOI: 10.1002/hbm.70030.Peer-Reviewed Original ResearchMeSH KeywordsAdultCerebral CortexDefault Mode NetworkFemaleHumansMagnetic Resonance ImagingMaleNerve NetPsychotic DisordersSpeechYoung AdultConceptsFirst-episode psychosisSpontaneous speechCortical hierarchyHierarchical brain organizationHigher-order association corticesPicture descriptionMode networkBrain organizationAssociation cortexPsychosisCognitive functionMental dysfunctionPrimary sensorimotorSpeech patternsSyntactic associationsCortical organizationSemantic networkSensorimotorSituational languageSpeechLanguageHierarchical organizationHierarchical distanceNeurocognitionFMRIMitochondrial network reorganization and transient expansion during oligodendrocyte generation
Bame X, Hill R. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. Nature Communications 2024, 15: 6979. PMID: 39143079, PMCID: PMC11324877, DOI: 10.1038/s41467-024-51016-2.Peer-Reviewed Original ResearchConceptsDecreased mitochondrial sizeLoss of mitochondriaMitochondrial motilityMitochondrial dynamicsCellular checkpointsMitochondrial distributionMitochondrial sizeMitochondrial contentOligodendrocyte precursor cellsSubcellular partitioningDistal processesMotilityOligodendrocyte generationOligodendrocyte processesLocal microenvironmentPrecursor cellsExtensive expansionMitochondriaOligodendrocyte lineageTransient expansionLineagesOligodendrocytesAging brainMyelinating oligodendrocytesMorphometricsCortical structure and subcortical volumes in conduct disorder: a coordinated analysis of 15 international cohorts from the ENIGMA-Antisocial Behavior Working Group
Gao Y, Staginnus M, Group E, Gao Y, Staginnus M, Townend S, Arango C, Bajaj S, Banaschewski T, Barker E, Benegal V, Berluti K, Bernhard A, Blair R, Boateng C, Bokde A, Brandeis D, Buitelaar J, Burt S, Cardinale E, Castro-Fornieles J, Chen H, Chen X, Chester S, Colins O, Cornwell H, Craig M, Cubillo A, Desrivieres S, Díaz D, Dietrich A, Dong D, Dykstra A, Franke B, Freitag C, Glennon J, Gonzalez-Madruga K, Hagan C, Hoekstra P, Holla B, Hyde L, Ibrahim K, Jabeen N, Jackson R, Jiang Y, Kohls G, Konrad K, Kypta-Vivanco A, Lamers K, Ma R, Marsh A, Martinelli A, Martinot J, Michalska K, Ming Q, Minosse S, Mitchell C, Monk C, Murphy D, Mycue L, Naaijen J, Oosterling M, Passamonti L, Pauli R, Alonso M, Phillips H, Ploe M, Raschle N, Roberts R, Rogers J, Rosa-Justicia M, Sagar-Ouriaghli I, Schulze U, Schumann G, Sethi A, Smaragdi A, Sonuga-Barke E, Stadler C, Stevens M, Sukhodolsky D, Sully K, Sun X, Toschi N, Townsend C, van der Wee N, Vermeiren R, Viding E, Wang X, Westerman H, Wu Q, Yao S, Zhang J, Zhou J, Zhou J, Jahanshad N, Thomopoulos S, Ching C, Kang M, Thompson P, Klapwijk E, Pine D, Baskin-Sommers A, Cecil C, Aghajani M, Walton E, Fairchild G, De Brito S. Cortical structure and subcortical volumes in conduct disorder: a coordinated analysis of 15 international cohorts from the ENIGMA-Antisocial Behavior Working Group. The Lancet Psychiatry 2024, 11: 620-632. PMID: 39025633, DOI: 10.1016/s2215-0366(24)00187-1.Peer-Reviewed Original ResearchConceptsGroup-by-age interactionCallous-unemotional traitsConduct disorder groupConduct disorderBrain structural alterationsSubcortical volumesDisorder groupDiagnosis of conduct disorderCaudal anterior cingulate cortexAnalysis of structural MRI dataCortical thicknessT1-weighted MRI brain scansBrain structural correlatesAnterior cingulate cortexSuperior temporal sulcusStructural MRI dataAssess group differencesMRI brain scansNucleus accumbensADHD comorbidityCingulate cortexDisorder subtypesSmaller amygdalaBrain alterationsTemporal sulcusCortical hubs of highly superior autobiographical memory
Orwig W, Diez I, Bueichekú E, Pedale T, Parente F, Campolongo P, Schacter D, Sepulcre J, Santangelo V. Cortical hubs of highly superior autobiographical memory. Cortex 2024, 179: 14-24. PMID: 39094240, DOI: 10.1016/j.cortex.2024.06.018.Peer-Reviewed Original ResearchMeSH KeywordsAdultBrainBrain MappingCerebral CortexFemaleHumansMagnetic Resonance ImagingMaleMemory, EpisodicNerve NetYoung AdultConceptsSuperior autobiographical memoryAutobiographical memoryCortical hubsWhole-brain connectivity analysisPattern of increased connectivityResting-state fMRI dataWhole-brain analysisAutobiographical memory networkPosterior cingulate cortexMidline areaSeed-based analysisFunctional brain connectivityGraph theory analysisCingulate cortexNeural underpinningsNeuroimaging studiesEnhance memoryRemembering eventsBrain regionsControl participantsConnectivity analysisFMRI dataBrain connectivityCortical regionsWhole-brainLateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors
Morozov Y, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cerebral Cortex 2024, 34: bhae293. PMID: 39024157, PMCID: PMC11485267, DOI: 10.1093/cercor/bhae293.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsProgenitor cellsVentricular zoneCerebral cortexBasolateral cell membraneApical anchorageProlonged neurogenesisMammalian cerebral cortexPrimary ciliaApical neural progenitorsCell membraneFraction of cellsNeural progenitorsStem cellsCerebral neurogenesisApical segmentsDevelopment of ciliaNuclear translocationMicrotubule organizing centerNeurogenesisCellsMacaque monkeysSpecies-specific differencesCortexBasal bodiesGenes associated with cortical thickness alterations in behavioral addiction
Xie H, Wang Y, Zhu F, Zhang F, Wu B, Zhao Z, Gan R, Gong Q, Jia Z. Genes associated with cortical thickness alterations in behavioral addiction. Cerebral Cortex 2024, 34: bhae298. PMID: 39051658, DOI: 10.1093/cercor/bhae298.Peer-Reviewed Original ResearchMeSH KeywordsAdultBehavior, AddictiveBrain Cortical ThicknessCerebral CortexFemaleHumansMagnetic Resonance ImagingMaleReceptors, Dopamine D2ConceptsBehavioral addictionsCortical thicknessBehavioral regulationPostcentral gyrusCompulsive reward-seeking behaviorReward-seeking behaviorDorsolateral prefrontal cortexDopamine D2 receptorsAllen Human Brain AtlasOrbital-frontal cortexCortical thickness alterationsHuman Brain AtlasAddiction phenotypesAddiction severityPrefrontal cortexD2 receptorsDopamine metabolismBrain areasNeurogenetic mechanismsAddictionThickness alterationsPrecuneusGyrusDopamineResponse to stimuliMassively parallel characterization of regulatory elements in the developing human cortex
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki P, Inoue F, Pereira D, Capauto D, Norton S, Vaccarino F, Pollen A, Nowakowski T, Ahituv N, Pollard K, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Bendl J, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Fullard J, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Haroutunian V, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Hoffman G, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kellis M, Khullar S, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Roussos P, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Voloudakis G, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024, 384: eadh0559. PMID: 38781390, DOI: 10.1126/science.adh0559.Peer-Reviewed Original ResearchConceptsGene regulatory elementsRegulatory elementsRegulation of enhancer activityCharacterization of regulatory elementsCis-regulatory activityNeuronal developmentPrimary cellsEnhanced activityGene regulationHuman neuronal developmentNucleotide changesEnhancer sequencesSequence basisUpstream regulatorComprehensive catalogHuman cellsDeveloping cortexSequenceVariantsOrganoidsCellsCerebral organoidsCortexHuman cortexNucleotideThe meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition
Magrou L, Joyce M, Froudist-Walsh S, Datta D, Wang X, Martinez-Trujillo J, Arnsten A. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cerebral Cortex 2024, 34: bhae174. PMID: 38771244, PMCID: PMC11107384, DOI: 10.1093/cercor/bhae174.Peer-Reviewed Original ResearchConceptsInter-areal connectionsVisual cortexPrimary visual cortexHigher cortical areasMacaque cortexPrimate specializationHigher cognitionPrimate cortexV1Working memory storageDendritic spine densityTop-down regulationPrefrontal cortexConnection structureSpine densityFunctional segregationCortical areasFrontal areasCortexConnectomeNetwork organizationMemory storageMultimodal associationConduction velocity, G-ratio, and extracellular water as microstructural characteristics of autism spectrum disorder
Newman B, Jacokes Z, Venkadesh S, Webb S, Kleinhans N, McPartland J, Druzgal T, Pelphrey K, Van Horn J, Consortium F. Conduction velocity, G-ratio, and extracellular water as microstructural characteristics of autism spectrum disorder. PLOS ONE 2024, 19: e0301964. PMID: 38630783, PMCID: PMC11023574, DOI: 10.1371/journal.pone.0301964.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderSocial Communication QuestionnaireSpectrum disorderCharacteristics of autism spectrum disorderAssociated with higher scoresEtiology of autism spectrum disorderMagnetic resonance imagingNeurotypical participantsWhite matter skeletonCommunication QuestionnaireBehavioral functionsFunctional connectivityT1w/T2w ratioNeuronal differencesStructural connectivityAdolescent participantsHigher scoresConduction velocityCortexExtracellular waterDisordersResonance imagingDiffusion MRI techniquesTraumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley M, Cardin J, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cerebral Cortex 2024, 34: bhae038. PMID: 38365273, PMCID: PMC11486687, DOI: 10.1093/cercor/bhae038.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAnimalsBrain InjuriesBrain Injuries, TraumaticCerebral CortexCognitionDisease Models, AnimalHumansMiceConceptsControlled cortical impactTraumatic brain injuryFunctional connectivityDisrupted functional connectivityAssociated with improved cognitionReduced theta powerBrain injuryHuman TBI patientsModel of traumatic brain injuryBehavioral state-dependent changesNetwork connectivity changesFunctional cortical connectivityBrain regionsTheta powerConnectivity changesState-dependent changesCortical impactPeriods of locomotionCortical connectivityTBI patientsRodent modelsECoG activityMotor dysfunctionCortexInjured cortexUtility of cortical tissue analysis in normal pressure hydrocephalus
Greenberg A, Mekbib K, Mehta N, Kiziltug E, Duy P, Smith H, Junkkari A, Leinonen V, Hyman B, Chan D, Curry W, Arnold S, Barker F, Frosch M, Kahle K. Utility of cortical tissue analysis in normal pressure hydrocephalus. Cerebral Cortex 2024, 34: bhae001. PMID: 38275188, PMCID: PMC10839843, DOI: 10.1093/cercor/bhae001.Peer-Reviewed Original ResearchConceptsIdiopathic normal pressure hydrocephalus patientsNormal pressure hydrocephalus patientsCerebrospinal fluid shuntsNormal pressure hydrocephalusIdiopathic normal pressure hydrocephalusHydrocephalus patientsPressure hydrocephalusOriginal patient cohortCortical pathologyRisks of treatmentPrognostic adjunctClinical improvementTissue analysisNegative pathologyShunt outcomeClinical outcomesPatient cohortUnfavorable outcomePooled analysisSystematic reviewOriginal cohortPooled statisticsLiving patientsConfounding diagnosesPatientsHypercapnia Causes Injury of the Cerebral Cortex and Cognitive Deficits in Newborn Piglets
Fritz K, Sanidas G, Cardenas R, Ghaemmaghami J, Byrd C, Simonti G, Valenzuela A, Valencia I, Delivoria-Papadopoulos M, Gallo V, Koutroulis I, Dean T, Kratimenos P. Hypercapnia Causes Injury of the Cerebral Cortex and Cognitive Deficits in Newborn Piglets. ENeuro 2024, 11: eneuro.0268-23.2023. PMID: 38233145, PMCID: PMC10913040, DOI: 10.1523/eneuro.0268-23.2023.Peer-Reviewed Original ResearchConceptsNeonatal intensive care unitIntensive care unitCare unitCortical neuronsCerebral cortexCritically ill newbornsEnergy failureSevere lung injuryCortical neuronal injuryLong-term suppressionImpaired neurobehaviorExposure to hypercapniaNeurodevelopmental outcomesIll newbornsLung injuryLipid peroxidationElectroencephalogram frequencyNeuronal injuryPersistent dysregulationDeoxyribonucleic acid fragmentationAssociated with changesNewbornsEffect of HCHypercapniaProapoptotic signaling
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply